NEO946B commited on
Commit
aa7e8fa
1 Parent(s): 7c937fd

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.22 +/- 0.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e41b97a867da90ceae43d3c3489760fad0724247581aa02c7c128c79f57c59e3
3
+ size 106831
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c533745a170>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7c533744eb00>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1691571532304997057,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAiRWaP7TanD+FgGu/hk2bPiNWdLx1LOA+nVpav3N6SD+9dZ+/hk2bPiNWdLx1LOA+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPRyrPwOpjz8XlpW/DvxrP7WMRr8z5MU+oakZv+W3Gz9jTW2/cLI6P8o9mT+mDaC9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACJFZo/tNqcP4WAa7/0Z5Q+0vY5Pyrq0L+GTZs+I1Z0vHUs4D530fg+Gf8su8+mvj6dWlq/c3pIP711n7836YW/fdTWvfEocr+GTZs+I1Z0vHUs4D530fg+Gf8su8+mvj6UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 1.2037822 1.2254243 -0.9199298 ]\n [ 0.30332583 -0.01491311 0.43783918]\n [-0.85294515 0.7831184 -1.2457806 ]\n [ 0.30332583 -0.01491311 0.43783918]]",
34
+ "desired_goal": "[[ 1.3367993 1.1223453 -1.1686429 ]\n [ 0.9218148 -0.7755845 0.38650665]\n [-0.6002446 0.60827476 -0.9269621 ]\n [ 0.72928524 1.1971982 -0.07815103]]",
35
+ "observation": "[[ 1.2037822 1.2254243 -0.9199298 0.2898556 0.7264224 -1.6321461 ]\n [ 0.30332583 -0.01491311 0.43783918 0.4859731 -0.00263972 0.3723664 ]\n [-0.85294515 0.7831184 -1.2457806 -1.0461797 -0.10489748 -0.9459372 ]\n [ 0.30332583 -0.01491311 0.43783918 0.4859731 -0.00263972 0.3723664 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7IthvDszBb2Dobs8beLBvTmFFj6Kggs9u2kLPuTz6L3KSDE+k2ZevSYt87zFQHM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.01376627 -0.03251956 0.02290416]\n [-0.09467015 0.14699258 0.03406004]\n [ 0.13614552 -0.11374643 0.17312923]\n [-0.05429704 -0.02968461 0.23755176]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9W3gDRtxdaMAWyUSwSMAXSUR0CqJuNvXK8tdX2UKGgGR7+Yk3S8an76aAdLAWgIR0CqJyYm1IAfdX2UKGgGR7/TTxXnyNGWaAdLA2gIR0CqJvF0gbIcdX2UKGgGR7/gcEvCdjG2aAdLBGgIR0CqJ7JPqLTAdX2UKGgGR7/YUnG8274BaAdLBGgIR0CqJ3Q2ETQFdX2UKGgGR7/A4Vh1DBuXaAdLA2gIR0CqJzbHIZIhdX2UKGgGR7/MX/o7muDBaAdLA2gIR0CqJwKR+z+ndX2UKGgGR7/JeqJdjXnRaAdLA2gIR0CqJ8Di4rjHdX2UKGgGR7/S6PKdQO4HaAdLA2gIR0CqJ4KfOD8MdX2UKGgGR7/NqCYkVvdeaAdLA2gIR0CqJ0UV8CxNdX2UKGgGR7/AhnJ1aGHpaAdLAmgIR0CqJwwEZBLPdX2UKGgGR7+4bKifxtpFaAdLAmgIR0CqJ8yYgJTmdX2UKGgGR7+6bWmP5pJxaAdLAmgIR0CqJ45ssQNDdX2UKGgGR7/TJZ4fOlfraAdLA2gIR0CqJ1UHpr1vdX2UKGgGR7/BcB2fTTfBaAdLAmgIR0CqJxehoM8YdX2UKGgGR7+yNR3u/k/9aAdLAmgIR0CqJ9XNs3yadX2UKGgGR7/LOt4iX6ZZaAdLA2gIR0CqJ5vJJXhgdX2UKGgGR7/F+qBEroW6aAdLAmgIR0CqJyB0p3HJdX2UKGgGR7+9wrDqGDcuaAdLAmgIR0CqJ96mfoRqdX2UKGgGR7+dgBtDUmUoaAdLAWgIR0CqJ6BWgezVdX2UKGgGR7/SAVwgkka/aAdLA2gIR0CqJ2Md92HMdX2UKGgGR7/Cdf9gnc+JaAdLAmgIR0CqJyxPwd8zdX2UKGgGR7/Bh6Skj5bhaAdLAmgIR0CqJ+qOcUdrdX2UKGgGR7+/Nqxkd3jdaAdLAmgIR0CqJ6xBE8aGdX2UKGgGR7+G7OE/SpiraAdLAWgIR0CqJ7CaRZEEdX2UKGgGR7/N/95yEL6UaAdLA2gIR0CqJ3Mwco6TdX2UKGgGR7+4+JP69CeFaAdLAmgIR0CqJ/OinHeadX2UKGgGR7/QrUb1h9b5aAdLA2gIR0CqJznAAQxvdX2UKGgGR7+34593KSxJaAdLAmgIR0CqJ3vAoG6gdX2UKGgGR7/OBZIQOFxoaAdLA2gIR0CqJ8BJRO1wdX2UKGgGR7+4mD15B1LbaAdLAmgIR0CqJ4a+WWyDdX2UKGgGR7/N69CeEqUeaAdLA2gIR0CqJ0lEAo5QdX2UKGgGR7/TtPpIMBp6aAdLBGgIR0CqKAdlNDc/dX2UKGgGR7/GA+Y+jdpJaAdLA2gIR0CqJ80Fjd56dX2UKGgGR7+wcU/OdGy5aAdLAmgIR0CqKA/IjnmrdX2UKGgGR7/UTviLl3hXaAdLA2gIR0CqJ5PJRwZPdX2UKGgGR7/Ku+RHPNVzaAdLA2gIR0CqJ1Zf+jubdX2UKGgGR7+oCbMHKOktaAdLAWgIR0CqJ5qt5le4dX2UKGgGR7/LC3PRiPQwaAdLA2gIR0CqKCA0Kqn4dX2UKGgGR7/XtCzC1qnFaAdLBGgIR0CqJ+H+yZ8bdX2UKGgGR7/RhOgxrSE2aAdLBGgIR0CqJ2qur6tUdX2UKGgGR7+2KjzqbBoFaAdLAmgIR0CqKCjbJwKjdX2UKGgGR7/YB1s+FDfFaAdLBGgIR0CqJ6z2nKnvdX2UKGgGR7/PELpiZv1laAdLA2gIR0CqJ/GRNh3JdX2UKGgGR7/B3bmEGqxUaAdLAmgIR0CqJ3ZM+NcXdX2UKGgGR7+09bHIZIhAaAdLAmgIR0CqJ/pItlI3dX2UKGgGR7/ZdS2phnanaAdLBGgIR0CqKD0T+NtJdX2UKGgGR7/XDKYAsCkoaAdLBGgIR0CqJ8FO45LidX2UKGgGR7/I86mwaBI4aAdLA2gIR0CqJ4PxhDw6dX2UKGgGR7/G59Vmz0HyaAdLA2gIR0CqKAoQOFxodX2UKGgGR7/QZ4fOlfqpaAdLA2gIR0CqKEzZxrBTdX2UKGgGR7/IiW3Sa3I/aAdLA2gIR0CqJ9Dlgc94dX2UKGgGR7/cHzpX6qKhaAdLBGgIR0CqJ5gDifg8dX2UKGgGR7/CLqD9OymiaAdLAmgIR0CqKFY6nzg/dX2UKGgGR7/MhZha1TisaAdLA2gIR0CqKBfoRqXXdX2UKGgGR7+mAwwj+rEMaAdLAWgIR0CqKFq2jO9ndX2UKGgGR7+VOsT37DVIaAdLAWgIR0CqKBx8UmD2dX2UKGgGR7/KiFCb+cYqaAdLA2gIR0CqJ97655JLdX2UKGgGR7/KNp/PPcBVaAdLA2gIR0CqJ6hFmWdFdX2UKGgGR7/QWdEsrd30aAdLA2gIR0CqKCyG8EmqdX2UKGgGR7/Wg1m8M/hVaAdLA2gIR0CqJ+8LKFIvdX2UKGgGR7/Ad+XqqwQlaAdLAmgIR0CqJ7H0K7ZndX2UKGgGR7/YC0ngHeJpaAdLBGgIR0CqKHBzvJA/dX2UKGgGR7+hvP1L8JlbaAdLAWgIR0CqKHUM5OrRdX2UKGgGR7+4jKPn0TURaAdLAmgIR0CqKDcOby6MdX2UKGgGR7/LSAH3UQTVaAdLA2gIR0CqJ8K77Kq5dX2UKGgGR7/dews5GSZCaAdLBGgIR0CqKATkp7TldX2UKGgGR7/X+x4Y77sOaAdLBGgIR0CqKImeDnNgdX2UKGgGR7/YhG6PKdQPaAdLBGgIR0CqKEtOM2m6dX2UKGgGR7+3hLoOhCdCaAdLAmgIR0CqKA29lEqldX2UKGgGR7/Pp+tr9EThaAdLA2gIR0CqJ9BSLqD9dX2UKGgGR7+oOhCdBjWkaAdLAWgIR0CqJ9SRB/qgdX2UKGgGR7/QY4hllK9PaAdLA2gIR0CqKJleWv8qdX2UKGgGR7/WYSg5BC2MaAdLA2gIR0CqKFslkYoBdX2UKGgGR7/VbAk9lmOEaAdLBGgIR0CqKCJMYdhidX2UKGgGR7/L62v0RODbaAdLA2gIR0CqJ+WHck+pdX2UKGgGR7/Ppwjt5UtJaAdLA2gIR0CqKKtmL9/CdX2UKGgGR7/S8PnSv1UVaAdLA2gIR0CqKG0c4o7WdX2UKGgGR7/S7yxzJZGKaAdLA2gIR0CqKDY4p+c6dX2UKGgGR7/KJj2Bas6raAdLA2gIR0CqJ/jSXt0FdX2UKGgGR7/Ax2St/4IsaAdLAmgIR0CqKAGahHskdX2UKGgGR7/glSbYsd1daAdLBGgIR0CqKL/JvHcUdX2UKGgGR7/XrjYI0IkaaAdLBGgIR0CqKIGGucMFdX2UKGgGR7/RVFQVKwpwaAdLA2gIR0CqKEP/aQFLdX2UKGgGR7+6RV6u4gA7aAdLAmgIR0CqKI2z4UN8dX2UKGgGR7/QPHDJlrdnaAdLA2gIR0CqKBKKYRdydX2UKGgGR7/TL8rI5o4/aAdLA2gIR0CqKFSxA0KrdX2UKGgGR7/Y38GcFyJbaAdLBGgIR0CqKNWKMvRJdX2UKGgGR7/QMINVinYQaAdLA2gIR0CqKJt1hb4bdX2UKGgGR7/NC66J66ataAdLA2gIR0CqKCBN21UmdX2UKGgGR7/HyEL6UJOWaAdLA2gIR0CqKGI2OyVwdX2UKGgGR7+oc7yQPqcFaAdLAWgIR0CqKCSmhufmdX2UKGgGR7/PyBClabF1aAdLA2gIR0CqKOTpPhybdX2UKGgGR7/MBGx2St/4aAdLA2gIR0CqKKpzkp7UdX2UKGgGR7+3gk1Muez2aAdLAmgIR0CqKC9E9dNWdX2UKGgGR7+ywHJLdvbXaAdLAmgIR0CqKO0x20RfdX2UKGgGR7+pUtI065oXaAdLAWgIR0CqKK7kXDWLdX2UKGgGR7/RSEDhcZ+AaAdLA2gIR0CqKHFUhmoSdX2UKGgGR7+6IBRyfcveaAdLAmgIR0CqKLcHWz4UdX2UKGgGR7/Kj9GZuyeJaAdLA2gIR0CqKDwH7gsLdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0d20a2df2dce4eed73648ed801b4f6d2cbe58163c61b950497627ececddf858
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ac9b92b82aa2d02eb0a30f6006c786ad776904559571a50edddf76dee89d501
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c533745a170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c533744eb00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691571532304997057, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAiRWaP7TanD+FgGu/hk2bPiNWdLx1LOA+nVpav3N6SD+9dZ+/hk2bPiNWdLx1LOA+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPRyrPwOpjz8XlpW/DvxrP7WMRr8z5MU+oakZv+W3Gz9jTW2/cLI6P8o9mT+mDaC9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACJFZo/tNqcP4WAa7/0Z5Q+0vY5Pyrq0L+GTZs+I1Z0vHUs4D530fg+Gf8su8+mvj6dWlq/c3pIP711n7836YW/fdTWvfEocr+GTZs+I1Z0vHUs4D530fg+Gf8su8+mvj6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.2037822 1.2254243 -0.9199298 ]\n [ 0.30332583 -0.01491311 0.43783918]\n [-0.85294515 0.7831184 -1.2457806 ]\n [ 0.30332583 -0.01491311 0.43783918]]", "desired_goal": "[[ 1.3367993 1.1223453 -1.1686429 ]\n [ 0.9218148 -0.7755845 0.38650665]\n [-0.6002446 0.60827476 -0.9269621 ]\n [ 0.72928524 1.1971982 -0.07815103]]", "observation": "[[ 1.2037822 1.2254243 -0.9199298 0.2898556 0.7264224 -1.6321461 ]\n [ 0.30332583 -0.01491311 0.43783918 0.4859731 -0.00263972 0.3723664 ]\n [-0.85294515 0.7831184 -1.2457806 -1.0461797 -0.10489748 -0.9459372 ]\n [ 0.30332583 -0.01491311 0.43783918 0.4859731 -0.00263972 0.3723664 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7IthvDszBb2Dobs8beLBvTmFFj6Kggs9u2kLPuTz6L3KSDE+k2ZevSYt87zFQHM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01376627 -0.03251956 0.02290416]\n [-0.09467015 0.14699258 0.03406004]\n [ 0.13614552 -0.11374643 0.17312923]\n [-0.05429704 -0.02968461 0.23755176]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9W3gDRtxdaMAWyUSwSMAXSUR0CqJuNvXK8tdX2UKGgGR7+Yk3S8an76aAdLAWgIR0CqJyYm1IAfdX2UKGgGR7/TTxXnyNGWaAdLA2gIR0CqJvF0gbIcdX2UKGgGR7/gcEvCdjG2aAdLBGgIR0CqJ7JPqLTAdX2UKGgGR7/YUnG8274BaAdLBGgIR0CqJ3Q2ETQFdX2UKGgGR7/A4Vh1DBuXaAdLA2gIR0CqJzbHIZIhdX2UKGgGR7/MX/o7muDBaAdLA2gIR0CqJwKR+z+ndX2UKGgGR7/JeqJdjXnRaAdLA2gIR0CqJ8Di4rjHdX2UKGgGR7/S6PKdQO4HaAdLA2gIR0CqJ4KfOD8MdX2UKGgGR7/NqCYkVvdeaAdLA2gIR0CqJ0UV8CxNdX2UKGgGR7/AhnJ1aGHpaAdLAmgIR0CqJwwEZBLPdX2UKGgGR7+4bKifxtpFaAdLAmgIR0CqJ8yYgJTmdX2UKGgGR7+6bWmP5pJxaAdLAmgIR0CqJ45ssQNDdX2UKGgGR7/TJZ4fOlfraAdLA2gIR0CqJ1UHpr1vdX2UKGgGR7/BcB2fTTfBaAdLAmgIR0CqJxehoM8YdX2UKGgGR7+yNR3u/k/9aAdLAmgIR0CqJ9XNs3yadX2UKGgGR7/LOt4iX6ZZaAdLA2gIR0CqJ5vJJXhgdX2UKGgGR7/F+qBEroW6aAdLAmgIR0CqJyB0p3HJdX2UKGgGR7+9wrDqGDcuaAdLAmgIR0CqJ96mfoRqdX2UKGgGR7+dgBtDUmUoaAdLAWgIR0CqJ6BWgezVdX2UKGgGR7/SAVwgkka/aAdLA2gIR0CqJ2Md92HMdX2UKGgGR7/Cdf9gnc+JaAdLAmgIR0CqJyxPwd8zdX2UKGgGR7/Bh6Skj5bhaAdLAmgIR0CqJ+qOcUdrdX2UKGgGR7+/Nqxkd3jdaAdLAmgIR0CqJ6xBE8aGdX2UKGgGR7+G7OE/SpiraAdLAWgIR0CqJ7CaRZEEdX2UKGgGR7/N/95yEL6UaAdLA2gIR0CqJ3Mwco6TdX2UKGgGR7+4+JP69CeFaAdLAmgIR0CqJ/OinHeadX2UKGgGR7/QrUb1h9b5aAdLA2gIR0CqJznAAQxvdX2UKGgGR7+34593KSxJaAdLAmgIR0CqJ3vAoG6gdX2UKGgGR7/OBZIQOFxoaAdLA2gIR0CqJ8BJRO1wdX2UKGgGR7+4mD15B1LbaAdLAmgIR0CqJ4a+WWyDdX2UKGgGR7/N69CeEqUeaAdLA2gIR0CqJ0lEAo5QdX2UKGgGR7/TtPpIMBp6aAdLBGgIR0CqKAdlNDc/dX2UKGgGR7/GA+Y+jdpJaAdLA2gIR0CqJ80Fjd56dX2UKGgGR7+wcU/OdGy5aAdLAmgIR0CqKA/IjnmrdX2UKGgGR7/UTviLl3hXaAdLA2gIR0CqJ5PJRwZPdX2UKGgGR7/Ku+RHPNVzaAdLA2gIR0CqJ1Zf+jubdX2UKGgGR7+oCbMHKOktaAdLAWgIR0CqJ5qt5le4dX2UKGgGR7/LC3PRiPQwaAdLA2gIR0CqKCA0Kqn4dX2UKGgGR7/XtCzC1qnFaAdLBGgIR0CqJ+H+yZ8bdX2UKGgGR7/RhOgxrSE2aAdLBGgIR0CqJ2qur6tUdX2UKGgGR7+2KjzqbBoFaAdLAmgIR0CqKCjbJwKjdX2UKGgGR7/YB1s+FDfFaAdLBGgIR0CqJ6z2nKnvdX2UKGgGR7/PELpiZv1laAdLA2gIR0CqJ/GRNh3JdX2UKGgGR7/B3bmEGqxUaAdLAmgIR0CqJ3ZM+NcXdX2UKGgGR7+09bHIZIhAaAdLAmgIR0CqJ/pItlI3dX2UKGgGR7/ZdS2phnanaAdLBGgIR0CqKD0T+NtJdX2UKGgGR7/XDKYAsCkoaAdLBGgIR0CqJ8FO45LidX2UKGgGR7/I86mwaBI4aAdLA2gIR0CqJ4PxhDw6dX2UKGgGR7/G59Vmz0HyaAdLA2gIR0CqKAoQOFxodX2UKGgGR7/QZ4fOlfqpaAdLA2gIR0CqKEzZxrBTdX2UKGgGR7/IiW3Sa3I/aAdLA2gIR0CqJ9Dlgc94dX2UKGgGR7/cHzpX6qKhaAdLBGgIR0CqJ5gDifg8dX2UKGgGR7/CLqD9OymiaAdLAmgIR0CqKFY6nzg/dX2UKGgGR7/MhZha1TisaAdLA2gIR0CqKBfoRqXXdX2UKGgGR7+mAwwj+rEMaAdLAWgIR0CqKFq2jO9ndX2UKGgGR7+VOsT37DVIaAdLAWgIR0CqKBx8UmD2dX2UKGgGR7/KiFCb+cYqaAdLA2gIR0CqJ97655JLdX2UKGgGR7/KNp/PPcBVaAdLA2gIR0CqJ6hFmWdFdX2UKGgGR7/QWdEsrd30aAdLA2gIR0CqKCyG8EmqdX2UKGgGR7/Wg1m8M/hVaAdLA2gIR0CqJ+8LKFIvdX2UKGgGR7/Ad+XqqwQlaAdLAmgIR0CqJ7H0K7ZndX2UKGgGR7/YC0ngHeJpaAdLBGgIR0CqKHBzvJA/dX2UKGgGR7+hvP1L8JlbaAdLAWgIR0CqKHUM5OrRdX2UKGgGR7+4jKPn0TURaAdLAmgIR0CqKDcOby6MdX2UKGgGR7/LSAH3UQTVaAdLA2gIR0CqJ8K77Kq5dX2UKGgGR7/dews5GSZCaAdLBGgIR0CqKATkp7TldX2UKGgGR7/X+x4Y77sOaAdLBGgIR0CqKImeDnNgdX2UKGgGR7/YhG6PKdQPaAdLBGgIR0CqKEtOM2m6dX2UKGgGR7+3hLoOhCdCaAdLAmgIR0CqKA29lEqldX2UKGgGR7/Pp+tr9EThaAdLA2gIR0CqJ9BSLqD9dX2UKGgGR7+oOhCdBjWkaAdLAWgIR0CqJ9SRB/qgdX2UKGgGR7/QY4hllK9PaAdLA2gIR0CqKJleWv8qdX2UKGgGR7/WYSg5BC2MaAdLA2gIR0CqKFslkYoBdX2UKGgGR7/VbAk9lmOEaAdLBGgIR0CqKCJMYdhidX2UKGgGR7/L62v0RODbaAdLA2gIR0CqJ+WHck+pdX2UKGgGR7/Ppwjt5UtJaAdLA2gIR0CqKKtmL9/CdX2UKGgGR7/S8PnSv1UVaAdLA2gIR0CqKG0c4o7WdX2UKGgGR7/S7yxzJZGKaAdLA2gIR0CqKDY4p+c6dX2UKGgGR7/KJj2Bas6raAdLA2gIR0CqJ/jSXt0FdX2UKGgGR7/Ax2St/4IsaAdLAmgIR0CqKAGahHskdX2UKGgGR7/glSbYsd1daAdLBGgIR0CqKL/JvHcUdX2UKGgGR7/XrjYI0IkaaAdLBGgIR0CqKIGGucMFdX2UKGgGR7/RVFQVKwpwaAdLA2gIR0CqKEP/aQFLdX2UKGgGR7+6RV6u4gA7aAdLAmgIR0CqKI2z4UN8dX2UKGgGR7/QPHDJlrdnaAdLA2gIR0CqKBKKYRdydX2UKGgGR7/TL8rI5o4/aAdLA2gIR0CqKFSxA0KrdX2UKGgGR7/Y38GcFyJbaAdLBGgIR0CqKNWKMvRJdX2UKGgGR7/QMINVinYQaAdLA2gIR0CqKJt1hb4bdX2UKGgGR7/NC66J66ataAdLA2gIR0CqKCBN21UmdX2UKGgGR7/HyEL6UJOWaAdLA2gIR0CqKGI2OyVwdX2UKGgGR7+oc7yQPqcFaAdLAWgIR0CqKCSmhufmdX2UKGgGR7/PyBClabF1aAdLA2gIR0CqKOTpPhybdX2UKGgGR7/MBGx2St/4aAdLA2gIR0CqKKpzkp7UdX2UKGgGR7+3gk1Muez2aAdLAmgIR0CqKC9E9dNWdX2UKGgGR7+ywHJLdvbXaAdLAmgIR0CqKO0x20RfdX2UKGgGR7+pUtI065oXaAdLAWgIR0CqKK7kXDWLdX2UKGgGR7/RSEDhcZ+AaAdLA2gIR0CqKHFUhmoSdX2UKGgGR7+6IBRyfcveaAdLAmgIR0CqKLcHWz4UdX2UKGgGR7/Kj9GZuyeJaAdLA2gIR0CqKDwH7gsLdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (688 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.21622056784108282, "std_reward": 0.11636539012119576, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-09T09:51:09.240036"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f0c630047f244482f7fe12828200feb0a69b9055e11e227ed827b5a62adee35
3
+ size 2623