WorkInTheDark commited on
Commit
47ced8a
1 Parent(s): b19f043

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -1
README.md CHANGED
@@ -1,3 +1,86 @@
1
  ---
2
- license: cc-by-nc-4.0
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ tags:
6
+ - mental
7
+ - mental health
8
+ - large language model
9
+ - flan-t5
10
  ---
11
+ # Model Card for mental-flan-t5-xxl
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+ This is a fine-tuned large language model for mental health prediction via online text data.
16
+
17
+
18
+ ## Model Details
19
+
20
+ ### Model Description
21
+
22
+ We fine-tune a FLAN-T5-XXL model with 4 high-quality text (6 tasks in total) datasets for the mental health prediction scenario: Dreaddit, DepSeverity, SDCNL, and CCRS-Suicide.
23
+ We have a separate model, fine-tuned on Alpaca, namely Mental-Alpaca, shared [here](https://huggingface.co/NEU-HAI/mental-alpaca)
24
+
25
+ - **Developed by:** Northeastern University Human-Centered AI Lab
26
+ - **Model type:** Sequence-to-sequence Text-generation
27
+ - **Language(s) (NLP):** English
28
+ - **License:** Apache 2.0 License
29
+ - **Finetuned from model :** [FLAN-T5-XXL](https://huggingface.co/google/flan-t5-xxl)
30
+
31
+ ### Model Sources
32
+
33
+ <!-- Provide the basic links for the model. -->
34
+
35
+ - **Repository:** https://github.com/neuhai/Mental-LLM
36
+ - **Paper:** https://arxiv.org/abs/2307.14385
37
+
38
+
39
+ ## Uses
40
+
41
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
42
+
43
+ ### Direct Use
44
+
45
+ The model is intended to be used for research purposes only in English.
46
+ The model has been fine-tuned for mental health prediction via online text data. Detailed information about the fine-tuning process and prompts can be found in our [paper](https://arxiv.org/abs/2307.14385).
47
+ The use of this model should also comply with the restrictions from [FLAN-T5-XXL](https://huggingface.co/google/flan-t5-xxl)
48
+
49
+
50
+ ### Out-of-Scope Use
51
+
52
+ The out-of-scope use of this model should comply with [FLAN-T5-XXL](https://huggingface.co/google/flan-t5-xxl).
53
+
54
+ ## Bias, Risks, and Limitations
55
+
56
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
57
+
58
+ The Bias, Risks, and Limitations of this model should also comply with [FLAN-T5-XXL](https://huggingface.co/google/flan-t5-xxl).
59
+
60
+
61
+ ## How to Get Started with the Model
62
+
63
+ Use the code below to get started with the model.
64
+
65
+ ```
66
+ from transformers import T5ForConditionalGeneration, T5Tokenizer
67
+ tokenizer = T5ForConditionalGeneration.from_pretrained("NEU-HAI/mental-flan-t5-xxl")
68
+ mdoel = T5Tokenizer.from_pretrained("NEU-HAI/mental-flan-t5-xxl")
69
+ ```
70
+
71
+
72
+ ## Training Details and Evaluation
73
+
74
+
75
+ Detailed information about our work can be found in our [paper](https://arxiv.org/abs/2307.14385).
76
+
77
+ ## Citation
78
+
79
+ ```
80
+ @article{xu2023leveraging,
81
+ title={Leveraging large language models for mental health prediction via online text data},
82
+ author={Xu, Xuhai and Yao, Bingshen and Dong, Yuanzhe and Yu, Hong and Hendler, James and Dey, Anind K and Wang, Dakuo},
83
+ journal={arXiv preprint arXiv:2307.14385},
84
+ year={2023}
85
+ }
86
+ ```