abbasmahmudiai commited on
Commit
33aec36
1 Parent(s): 0bd1a97

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -1
README.md CHANGED
@@ -6,8 +6,11 @@ language:
6
  pipeline_tag: token-classification
7
  ---
8
  Named entity recognition On Persian dataset
 
9
  traindataset=20484 persian sentense
 
10
  valdataset=2561
 
11
  AutoTokenizer=HooshvareLab/bert-fa-base-uncased
12
 
13
  ner_tags=
@@ -26,10 +29,15 @@ ner_tags=
26
 
27
  training_args=
28
  learning_rate=2e-5,
 
29
  per_device_train_batch_size=16,
 
30
  per_device_eval_batch_size=16,
 
31
  num_train_epochs=4,
 
32
  weight_decay=0.01
 
33
 
34
  Training Loss=0.001000
35
 
@@ -43,4 +51,19 @@ sample2:
43
  'entity': 'B-pers',
44
  'score': 0.99988234,
45
  'index': 2,
46
- 'word': 'عباس',
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  pipeline_tag: token-classification
7
  ---
8
  Named entity recognition On Persian dataset
9
+
10
  traindataset=20484 persian sentense
11
+
12
  valdataset=2561
13
+
14
  AutoTokenizer=HooshvareLab/bert-fa-base-uncased
15
 
16
  ner_tags=
 
29
 
30
  training_args=
31
  learning_rate=2e-5,
32
+
33
  per_device_train_batch_size=16,
34
+
35
  per_device_eval_batch_size=16,
36
+
37
  num_train_epochs=4,
38
+
39
  weight_decay=0.01
40
+
41
 
42
  Training Loss=0.001000
43
 
 
51
  'entity': 'B-pers',
52
  'score': 0.99988234,
53
  'index': 2,
54
+ 'word': 'عباس',
55
+
56
+
57
+ for use this model:
58
+
59
+ from transformers import pipeline
60
+
61
+ pipe = pipeline("token-classification", model="NLPclass/Named_entity_recognition_persian")
62
+
63
+ sentence = ""
64
+
65
+ predicted_ner = pipe(sentence)
66
+
67
+ for entity in predicted_ner:
68
+
69
+ print(f"Entity: {entity['word']}, Label: {entity['entity']}")