File size: 1,538 Bytes
4e97a81 1903c5a 4e97a81 1903c5a 39b1f14 1903c5a 4e97a81 1903c5a 4e97a81 1903c5a 4e97a81 1903c5a 4e97a81 b53706a 1903c5a 374b849 1903c5a 374b849 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
from typing import Dict, List, Any
from gliner import GLiNER
class EndpointHandler:
def __init__(self, path=""):
# Initialize the GLiNER model
self.model = GLiNER.from_pretrained("urchade/gliner_multi-v2.1")
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
Args:
data (Dict[str, Any]): The input data including:
- "inputs": The text input from which to extract information.
- "labels": The labels to predict entities for.
Returns:
List[Dict[str, Any]]: The extracted entities from the text, formatted as required.
"""
# Get inputs and labels
inputs = data.get("inputs", "")
labels = ["party", "document title"]
# Predict entities using GLiNER
entities = self.model.predict_entities(inputs, labels)
# Initialize a dictionary to store organized entities
organized_entities = {label: {"labels": [], "scores": []} for label in labels}
for entity in entities:
label = entity['label']
text = entity['text']
score = entity['score']
# Append text and score to the corresponding label
organized_entities[label]["labels"].append(text)
organized_entities[label]["scores"].append(score)
# Store organized entities in document metadata
doc.meta["entities"] = organized_entities
return {"documents": documents}
|