File size: 2,334 Bytes
e34e0a8 d431d3b e34e0a8 df453a1 14f6730 df453a1 8f33fb3 df453a1 e34e0a8 47a101f 5ecf78f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
tags:
- image-classification
- vision
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: outputs
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9107332624867163
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# outputs
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the [PETA dataset](http://mmlab.ie.cuhk.edu.hk/projects/PETA_files/Pedestrian%20Attribute%20Recognition%20At%20Far%20Distance.pdf) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2170
- Accuracy: 0.9107
## Model description
More information needed
#### How to use
You can use this model with Transformers *pipeline* .
```python
from transformers import pipeline
gender_classifier = pipeline(model="NTQAI/pedestrian_gender_recognition")
image_path = "abc.jpg"
results = gender_classifier(image_path)
print(results)
```
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.5193 | 1.0 | 2000 | 0.3346 | 0.8533 |
| 0.337 | 2.0 | 4000 | 0.2892 | 0.8778 |
| 0.3771 | 3.0 | 6000 | 0.2493 | 0.8969 |
| 0.3819 | 4.0 | 8000 | 0.2275 | 0.9100 |
| 0.3581 | 5.0 | 10000 | 0.2170 | 0.9107 |
### Framework versions
- Transformers 4.24.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
### Contact information
For personal communication related to this project, please contact Nha Nguyen Van ([email protected]). |