End of training
Browse files- README.md +161 -0
- config.json +43 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google-bert/bert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
model-index:
|
12 |
+
- name: Intent-classification-12kv2
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# Intent-classification-12kv2
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.0074
|
24 |
+
- Accuracy: 0.9984
|
25 |
+
- F1: 0.9983
|
26 |
+
- Precision: 0.9983
|
27 |
+
- Recall: 0.9983
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 32
|
48 |
+
- eval_batch_size: 32
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_steps: 10
|
53 |
+
- num_epochs: 5
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
59 |
+
| 1.742 | 0.05 | 10 | 1.4822 | 0.6954 | 0.6918 | 0.7288 | 0.6966 |
|
60 |
+
| 1.2849 | 0.11 | 20 | 0.9533 | 0.8713 | 0.8699 | 0.8899 | 0.8729 |
|
61 |
+
| 0.8226 | 0.16 | 30 | 0.5235 | 0.9786 | 0.9786 | 0.9790 | 0.9785 |
|
62 |
+
| 0.399 | 0.21 | 40 | 0.2295 | 0.9812 | 0.9812 | 0.9811 | 0.9817 |
|
63 |
+
| 0.1871 | 0.26 | 50 | 0.1168 | 0.9839 | 0.9839 | 0.9844 | 0.9836 |
|
64 |
+
| 0.0855 | 0.32 | 60 | 0.0508 | 0.9928 | 0.9928 | 0.9928 | 0.9928 |
|
65 |
+
| 0.0546 | 0.37 | 70 | 0.0300 | 0.9947 | 0.9947 | 0.9948 | 0.9947 |
|
66 |
+
| 0.0226 | 0.42 | 80 | 0.0271 | 0.9947 | 0.9948 | 0.9947 | 0.9948 |
|
67 |
+
| 0.0306 | 0.47 | 90 | 0.0416 | 0.9888 | 0.9887 | 0.9894 | 0.9883 |
|
68 |
+
| 0.0336 | 0.53 | 100 | 0.0157 | 0.9970 | 0.9970 | 0.9970 | 0.9971 |
|
69 |
+
| 0.0373 | 0.58 | 110 | 0.0214 | 0.9951 | 0.9951 | 0.9952 | 0.9951 |
|
70 |
+
| 0.0094 | 0.63 | 120 | 0.0121 | 0.9970 | 0.9971 | 0.9971 | 0.9970 |
|
71 |
+
| 0.0077 | 0.68 | 130 | 0.0094 | 0.9980 | 0.9980 | 0.9980 | 0.9981 |
|
72 |
+
| 0.0253 | 0.74 | 140 | 0.0077 | 0.9987 | 0.9987 | 0.9987 | 0.9987 |
|
73 |
+
| 0.0233 | 0.79 | 150 | 0.0075 | 0.9987 | 0.9987 | 0.9987 | 0.9987 |
|
74 |
+
| 0.0068 | 0.84 | 160 | 0.0080 | 0.9987 | 0.9987 | 0.9987 | 0.9987 |
|
75 |
+
| 0.0286 | 0.89 | 170 | 0.0141 | 0.9964 | 0.9964 | 0.9964 | 0.9964 |
|
76 |
+
| 0.0139 | 0.95 | 180 | 0.0104 | 0.9970 | 0.9970 | 0.9970 | 0.9971 |
|
77 |
+
| 0.0043 | 1.0 | 190 | 0.0074 | 0.9977 | 0.9977 | 0.9977 | 0.9976 |
|
78 |
+
| 0.0122 | 1.05 | 200 | 0.0065 | 0.9987 | 0.9987 | 0.9987 | 0.9987 |
|
79 |
+
| 0.0071 | 1.11 | 210 | 0.0059 | 0.9980 | 0.9980 | 0.9981 | 0.9980 |
|
80 |
+
| 0.0025 | 1.16 | 220 | 0.0083 | 0.9984 | 0.9984 | 0.9984 | 0.9983 |
|
81 |
+
| 0.0232 | 1.21 | 230 | 0.0057 | 0.9984 | 0.9984 | 0.9984 | 0.9984 |
|
82 |
+
| 0.0035 | 1.26 | 240 | 0.0056 | 0.9987 | 0.9987 | 0.9987 | 0.9987 |
|
83 |
+
| 0.0246 | 1.32 | 250 | 0.0053 | 0.9984 | 0.9984 | 0.9984 | 0.9983 |
|
84 |
+
| 0.0023 | 1.37 | 260 | 0.0063 | 0.9980 | 0.9980 | 0.9981 | 0.9980 |
|
85 |
+
| 0.0021 | 1.42 | 270 | 0.0048 | 0.9984 | 0.9984 | 0.9984 | 0.9983 |
|
86 |
+
| 0.002 | 1.47 | 280 | 0.0028 | 0.9997 | 0.9997 | 0.9997 | 0.9997 |
|
87 |
+
| 0.022 | 1.53 | 290 | 0.0023 | 0.9997 | 0.9997 | 0.9997 | 0.9997 |
|
88 |
+
| 0.0135 | 1.58 | 300 | 0.0046 | 0.9987 | 0.9987 | 0.9987 | 0.9987 |
|
89 |
+
| 0.0026 | 1.63 | 310 | 0.0082 | 0.9977 | 0.9977 | 0.9979 | 0.9976 |
|
90 |
+
| 0.0019 | 1.68 | 320 | 0.0043 | 0.9990 | 0.9990 | 0.9991 | 0.9990 |
|
91 |
+
| 0.0017 | 1.74 | 330 | 0.0035 | 0.9993 | 0.9994 | 0.9994 | 0.9994 |
|
92 |
+
| 0.0019 | 1.79 | 340 | 0.0015 | 1.0 | 1.0 | 1.0 | 1.0 |
|
93 |
+
| 0.0014 | 1.84 | 350 | 0.0013 | 1.0 | 1.0 | 1.0 | 1.0 |
|
94 |
+
| 0.0014 | 1.89 | 360 | 0.0013 | 1.0 | 1.0 | 1.0 | 1.0 |
|
95 |
+
| 0.0013 | 1.95 | 370 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 |
|
96 |
+
| 0.0013 | 2.0 | 380 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 |
|
97 |
+
| 0.0012 | 2.05 | 390 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 |
|
98 |
+
| 0.0011 | 2.11 | 400 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 |
|
99 |
+
| 0.0011 | 2.16 | 410 | 0.0010 | 1.0 | 1.0 | 1.0 | 1.0 |
|
100 |
+
| 0.0011 | 2.21 | 420 | 0.0010 | 1.0 | 1.0 | 1.0 | 1.0 |
|
101 |
+
| 0.0014 | 2.26 | 430 | 0.0009 | 1.0 | 1.0 | 1.0 | 1.0 |
|
102 |
+
| 0.001 | 2.32 | 440 | 0.0009 | 1.0 | 1.0 | 1.0 | 1.0 |
|
103 |
+
| 0.001 | 2.37 | 450 | 0.0009 | 1.0 | 1.0 | 1.0 | 1.0 |
|
104 |
+
| 0.0009 | 2.42 | 460 | 0.0009 | 1.0 | 1.0 | 1.0 | 1.0 |
|
105 |
+
| 0.0009 | 2.47 | 470 | 0.0008 | 1.0 | 1.0 | 1.0 | 1.0 |
|
106 |
+
| 0.0009 | 2.53 | 480 | 0.0008 | 1.0 | 1.0 | 1.0 | 1.0 |
|
107 |
+
| 0.0009 | 2.58 | 490 | 0.0008 | 1.0 | 1.0 | 1.0 | 1.0 |
|
108 |
+
| 0.0009 | 2.63 | 500 | 0.0008 | 1.0 | 1.0 | 1.0 | 1.0 |
|
109 |
+
| 0.0008 | 2.68 | 510 | 0.0008 | 1.0 | 1.0 | 1.0 | 1.0 |
|
110 |
+
| 0.0008 | 2.74 | 520 | 0.0008 | 1.0 | 1.0 | 1.0 | 1.0 |
|
111 |
+
| 0.0008 | 2.79 | 530 | 0.0007 | 1.0 | 1.0 | 1.0 | 1.0 |
|
112 |
+
| 0.0008 | 2.84 | 540 | 0.0007 | 1.0 | 1.0 | 1.0 | 1.0 |
|
113 |
+
| 0.0008 | 2.89 | 550 | 0.0007 | 1.0 | 1.0 | 1.0 | 1.0 |
|
114 |
+
| 0.0008 | 2.95 | 560 | 0.0007 | 1.0 | 1.0 | 1.0 | 1.0 |
|
115 |
+
| 0.0007 | 3.0 | 570 | 0.0007 | 1.0 | 1.0 | 1.0 | 1.0 |
|
116 |
+
| 0.0009 | 3.05 | 580 | 0.0007 | 1.0 | 1.0 | 1.0 | 1.0 |
|
117 |
+
| 0.0007 | 3.11 | 590 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
|
118 |
+
| 0.0007 | 3.16 | 600 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
|
119 |
+
| 0.0007 | 3.21 | 610 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
|
120 |
+
| 0.0007 | 3.26 | 620 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
|
121 |
+
| 0.0007 | 3.32 | 630 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
|
122 |
+
| 0.0007 | 3.37 | 640 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
|
123 |
+
| 0.0006 | 3.42 | 650 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
|
124 |
+
| 0.0006 | 3.47 | 660 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
|
125 |
+
| 0.0006 | 3.53 | 670 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
|
126 |
+
| 0.0006 | 3.58 | 680 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
|
127 |
+
| 0.0006 | 3.63 | 690 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
|
128 |
+
| 0.0006 | 3.68 | 700 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
|
129 |
+
| 0.0006 | 3.74 | 710 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
|
130 |
+
| 0.0006 | 3.79 | 720 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
|
131 |
+
| 0.0006 | 3.84 | 730 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
|
132 |
+
| 0.0006 | 3.89 | 740 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
133 |
+
| 0.0006 | 3.95 | 750 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
134 |
+
| 0.0006 | 4.0 | 760 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
135 |
+
| 0.0006 | 4.05 | 770 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
136 |
+
| 0.0006 | 4.11 | 780 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
137 |
+
| 0.0006 | 4.16 | 790 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
138 |
+
| 0.0006 | 4.21 | 800 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
139 |
+
| 0.0006 | 4.26 | 810 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
140 |
+
| 0.0006 | 4.32 | 820 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
141 |
+
| 0.0006 | 4.37 | 830 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
142 |
+
| 0.0006 | 4.42 | 840 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
143 |
+
| 0.0006 | 4.47 | 850 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
144 |
+
| 0.0006 | 4.53 | 860 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
145 |
+
| 0.0006 | 4.58 | 870 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
146 |
+
| 0.0005 | 4.63 | 880 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
147 |
+
| 0.0006 | 4.68 | 890 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
148 |
+
| 0.0005 | 4.74 | 900 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
149 |
+
| 0.0005 | 4.79 | 910 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
150 |
+
| 0.0006 | 4.84 | 920 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
151 |
+
| 0.0005 | 4.89 | 930 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
152 |
+
| 0.0006 | 4.95 | 940 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
153 |
+
| 0.0005 | 5.0 | 950 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
154 |
+
|
155 |
+
|
156 |
+
### Framework versions
|
157 |
+
|
158 |
+
- Transformers 4.38.2
|
159 |
+
- Pytorch 2.1.2
|
160 |
+
- Datasets 2.1.0
|
161 |
+
- Tokenizers 0.15.2
|
config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "google-bert/bert-base-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "SBC",
|
14 |
+
"1": "Change",
|
15 |
+
"2": "Install",
|
16 |
+
"3": "Summarize",
|
17 |
+
"4": "Compensation",
|
18 |
+
"5": "Terminate"
|
19 |
+
},
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"intermediate_size": 3072,
|
22 |
+
"label2id": {
|
23 |
+
"Change": 1,
|
24 |
+
"Compensation": 4,
|
25 |
+
"Install": 2,
|
26 |
+
"SBC": 0,
|
27 |
+
"Summarize": 3,
|
28 |
+
"Terminate": 5
|
29 |
+
},
|
30 |
+
"layer_norm_eps": 1e-12,
|
31 |
+
"max_position_embeddings": 512,
|
32 |
+
"model_type": "bert",
|
33 |
+
"num_attention_heads": 12,
|
34 |
+
"num_hidden_layers": 12,
|
35 |
+
"pad_token_id": 0,
|
36 |
+
"position_embedding_type": "absolute",
|
37 |
+
"problem_type": "single_label_classification",
|
38 |
+
"torch_dtype": "float32",
|
39 |
+
"transformers_version": "4.38.2",
|
40 |
+
"type_vocab_size": 2,
|
41 |
+
"use_cache": true,
|
42 |
+
"vocab_size": 30522
|
43 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1faf633f677c05daba1fff0e60fbaaf3c8608c00b76dd85f1d1789fe516e730
|
3 |
+
size 437970952
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98778390ede4cc4769f811d6f2c9d1975625f7787e58671fd4857fe68635598c
|
3 |
+
size 4856
|