--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: Intent-classification-DeBERTa-model-Ashuv2 results: [] --- # Intent-classification-DeBERTa-model-Ashuv2 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1666 - Accuracy: 0.9012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7819 | 0.12 | 10 | 1.7969 | 0.3665 | | 1.7316 | 0.25 | 20 | 1.6351 | 0.3975 | | 1.4279 | 0.37 | 30 | 1.2845 | 0.5776 | | 1.0181 | 0.49 | 40 | 0.8974 | 0.7143 | | 0.7285 | 0.62 | 50 | 0.6361 | 0.7640 | | 0.7265 | 0.74 | 60 | 0.4886 | 0.8509 | | 0.5108 | 0.86 | 70 | 0.3599 | 0.9006 | | 0.4413 | 0.99 | 80 | 0.2510 | 0.8944 | | 0.3556 | 1.11 | 90 | 0.2156 | 0.9130 | | 0.2884 | 1.23 | 100 | 0.2777 | 0.8944 | | 0.1914 | 1.36 | 110 | 0.2518 | 0.8944 | | 0.5051 | 1.48 | 120 | 0.2118 | 0.9130 | | 0.1151 | 1.6 | 130 | 0.1957 | 0.9130 | | 0.1745 | 1.73 | 140 | 0.2052 | 0.8820 | | 0.1987 | 1.85 | 150 | 0.2053 | 0.8882 | | 0.2467 | 1.98 | 160 | 0.1945 | 0.8944 | | 0.3075 | 2.1 | 170 | 0.2680 | 0.8944 | | 0.1732 | 2.22 | 180 | 0.2642 | 0.8882 | | 0.1627 | 2.35 | 190 | 0.1915 | 0.9068 | | 0.1766 | 2.47 | 200 | 0.1708 | 0.9130 | | 0.2563 | 2.59 | 210 | 0.1691 | 0.8944 | | 0.189 | 2.72 | 220 | 0.1941 | 0.9130 | | 0.1696 | 2.84 | 230 | 0.1907 | 0.9130 | | 0.1865 | 2.96 | 240 | 0.4247 | 0.9130 | | 0.3183 | 3.09 | 250 | 0.2251 | 0.8944 | | 0.185 | 3.21 | 260 | 0.2289 | 0.8882 | | 0.1636 | 3.33 | 270 | 0.1887 | 0.8944 | | 0.2432 | 3.46 | 280 | 0.2055 | 0.8882 | | 0.1518 | 3.58 | 290 | 0.2703 | 0.8944 | | 0.2371 | 3.7 | 300 | 0.2638 | 0.8944 | | 0.1742 | 3.83 | 310 | 0.2309 | 0.8944 | | 0.2269 | 3.95 | 320 | 0.2208 | 0.8882 | | 0.1404 | 4.07 | 330 | 0.2156 | 0.8820 | | 0.1056 | 4.2 | 340 | 0.2192 | 0.9006 | | 0.164 | 4.32 | 350 | 0.2282 | 0.9068 | | 0.1419 | 4.44 | 360 | 0.2380 | 0.9068 | | 0.1164 | 4.57 | 370 | 0.2438 | 0.9006 | | 0.2167 | 4.69 | 380 | 0.2429 | 0.9006 | | 0.1244 | 4.81 | 390 | 0.2363 | 0.8820 | | 0.2341 | 4.94 | 400 | 0.2344 | 0.8882 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.2+cpu - Datasets 2.1.0 - Tokenizers 0.15.2