Clone facebook/bart-large-mnli
Browse files- README.md +81 -0
- config.json +49 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
thumbnail: https://huggingface.co/front/thumbnails/facebook.png
|
4 |
+
pipeline_tag: zero-shot-classification
|
5 |
+
datasets:
|
6 |
+
- multi_nli
|
7 |
+
---
|
8 |
+
|
9 |
+
# bart-large-mnli
|
10 |
+
|
11 |
+
This is the checkpoint for [bart-large](https://huggingface.co/facebook/bart-large) after being trained on the [MultiNLI (MNLI)](https://huggingface.co/datasets/multi_nli) dataset.
|
12 |
+
|
13 |
+
Additional information about this model:
|
14 |
+
- The [bart-large](https://huggingface.co/facebook/bart-large) model page
|
15 |
+
- [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
|
16 |
+
](https://arxiv.org/abs/1910.13461)
|
17 |
+
- [BART fairseq implementation](https://github.com/pytorch/fairseq/tree/master/fairseq/models/bart)
|
18 |
+
|
19 |
+
## NLI-based Zero Shot Text Classification
|
20 |
+
|
21 |
+
[Yin et al.](https://arxiv.org/abs/1909.00161) proposed a method for using pre-trained NLI models as a ready-made zero-shot sequence classifiers. The method works by posing the sequence to be classified as the NLI premise and to construct a hypothesis from each candidate label. For example, if we want to evaluate whether a sequence belongs to the class "politics", we could construct a hypothesis of `This text is about politics.`. The probabilities for entailment and contradiction are then converted to label probabilities.
|
22 |
+
|
23 |
+
This method is surprisingly effective in many cases, particularly when used with larger pre-trained models like BART and Roberta. See [this blog post](https://joeddav.github.io/blog/2020/05/29/ZSL.html) for a more expansive introduction to this and other zero shot methods, and see the code snippets below for examples of using this model for zero-shot classification both with Hugging Face's built-in pipeline and with native Transformers/PyTorch code.
|
24 |
+
|
25 |
+
#### With the zero-shot classification pipeline
|
26 |
+
|
27 |
+
The model can be loaded with the `zero-shot-classification` pipeline like so:
|
28 |
+
|
29 |
+
```python
|
30 |
+
from transformers import pipeline
|
31 |
+
classifier = pipeline("zero-shot-classification",
|
32 |
+
model="facebook/bart-large-mnli")
|
33 |
+
```
|
34 |
+
|
35 |
+
You can then use this pipeline to classify sequences into any of the class names you specify.
|
36 |
+
|
37 |
+
```python
|
38 |
+
sequence_to_classify = "one day I will see the world"
|
39 |
+
candidate_labels = ['travel', 'cooking', 'dancing']
|
40 |
+
classifier(sequence_to_classify, candidate_labels)
|
41 |
+
#{'labels': ['travel', 'dancing', 'cooking'],
|
42 |
+
# 'scores': [0.9938651323318481, 0.0032737774308770895, 0.002861034357920289],
|
43 |
+
# 'sequence': 'one day I will see the world'}
|
44 |
+
```
|
45 |
+
|
46 |
+
If more than one candidate label can be correct, pass `multi_class=True` to calculate each class independently:
|
47 |
+
|
48 |
+
```python
|
49 |
+
candidate_labels = ['travel', 'cooking', 'dancing', 'exploration']
|
50 |
+
classifier(sequence_to_classify, candidate_labels, multi_class=True)
|
51 |
+
#{'labels': ['travel', 'exploration', 'dancing', 'cooking'],
|
52 |
+
# 'scores': [0.9945111274719238,
|
53 |
+
# 0.9383890628814697,
|
54 |
+
# 0.0057061901316046715,
|
55 |
+
# 0.0018193122232332826],
|
56 |
+
# 'sequence': 'one day I will see the world'}
|
57 |
+
```
|
58 |
+
|
59 |
+
|
60 |
+
#### With manual PyTorch
|
61 |
+
|
62 |
+
```python
|
63 |
+
# pose sequence as a NLI premise and label as a hypothesis
|
64 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
65 |
+
nli_model = AutoModelForSequenceClassification.from_pretrained('facebook/bart-large-mnli')
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained('facebook/bart-large-mnli')
|
67 |
+
|
68 |
+
premise = sequence
|
69 |
+
hypothesis = f'This example is {label}.'
|
70 |
+
|
71 |
+
# run through model pre-trained on MNLI
|
72 |
+
x = tokenizer.encode(premise, hypothesis, return_tensors='pt',
|
73 |
+
truncation_strategy='only_first')
|
74 |
+
logits = nli_model(x.to(device))[0]
|
75 |
+
|
76 |
+
# we throw away "neutral" (dim 1) and take the probability of
|
77 |
+
# "entailment" (2) as the probability of the label being true
|
78 |
+
entail_contradiction_logits = logits[:,[0,2]]
|
79 |
+
probs = entail_contradiction_logits.softmax(dim=1)
|
80 |
+
prob_label_is_true = probs[:,1]
|
81 |
+
```
|
config.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_num_labels": 3,
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"add_final_layer_norm": false,
|
6 |
+
"architectures": [
|
7 |
+
"BartForSequenceClassification"
|
8 |
+
],
|
9 |
+
"attention_dropout": 0.0,
|
10 |
+
"bos_token_id": 0,
|
11 |
+
"classif_dropout": 0.0,
|
12 |
+
"classifier_dropout": 0.0,
|
13 |
+
"d_model": 1024,
|
14 |
+
"decoder_attention_heads": 16,
|
15 |
+
"decoder_ffn_dim": 4096,
|
16 |
+
"decoder_layerdrop": 0.0,
|
17 |
+
"decoder_layers": 12,
|
18 |
+
"decoder_start_token_id": 2,
|
19 |
+
"dropout": 0.1,
|
20 |
+
"encoder_attention_heads": 16,
|
21 |
+
"encoder_ffn_dim": 4096,
|
22 |
+
"encoder_layerdrop": 0.0,
|
23 |
+
"encoder_layers": 12,
|
24 |
+
"eos_token_id": 2,
|
25 |
+
"forced_eos_token_id": 2,
|
26 |
+
"gradient_checkpointing": false,
|
27 |
+
"id2label": {
|
28 |
+
"0": "contradiction",
|
29 |
+
"1": "neutral",
|
30 |
+
"2": "entailment"
|
31 |
+
},
|
32 |
+
"init_std": 0.02,
|
33 |
+
"is_encoder_decoder": true,
|
34 |
+
"label2id": {
|
35 |
+
"contradiction": 0,
|
36 |
+
"entailment": 2,
|
37 |
+
"neutral": 1
|
38 |
+
},
|
39 |
+
"max_position_embeddings": 1024,
|
40 |
+
"model_type": "bart",
|
41 |
+
"normalize_before": false,
|
42 |
+
"num_hidden_layers": 12,
|
43 |
+
"output_past": false,
|
44 |
+
"pad_token_id": 1,
|
45 |
+
"scale_embedding": false,
|
46 |
+
"transformers_version": "4.7.0.dev0",
|
47 |
+
"use_cache": true,
|
48 |
+
"vocab_size": 50265
|
49 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce253627f98f9db22af6a86efee6e905f001f7d8dc02dd14a8b4b4710c302b17
|
3 |
+
size 1629486723
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"model_max_length": 1024}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|