File size: 2,361 Bytes
01b86eb 9fe15e8 ac54ec1 8fd7dbc ac54ec1 e4abe04 01b86eb e4abe04 01b86eb e4abe04 01b86eb ea63883 8fd7dbc 9fe15e8 01b86eb e4abe04 01b86eb e4abe04 01b86eb e4abe04 01b86eb e4abe04 01b86eb e4abe04 01b86eb e4abe04 01b86eb e4abe04 01b86eb e4abe04 01b86eb e4abe04 507392e e4abe04 ea63883 01b86eb 8fd7dbc ea63883 9fe15e8 8fd7dbc e4abe04 01b86eb e4abe04 ea63883 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
base_model: bert-base-cased
license: apache-2.0
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: bert-finetuned-ner4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner4
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1250
- Precision: 0.5977
- Recall: 0.7121
- F1: 0.6499
- Accuracy: 0.9640
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2424 | 1.0 | 2489 | 0.2411 | 0.1538 | 0.3948 | 0.2214 | 0.9097 |
| 0.1952 | 2.0 | 4978 | 0.2152 | 0.2033 | 0.4518 | 0.2804 | 0.9223 |
| 0.1771 | 3.0 | 7467 | 0.1737 | 0.2826 | 0.4268 | 0.3401 | 0.9387 |
| 0.1404 | 4.0 | 9956 | 0.1531 | 0.3981 | 0.5237 | 0.4524 | 0.9479 |
| 0.126 | 5.0 | 12445 | 0.1395 | 0.4761 | 0.6188 | 0.5382 | 0.9542 |
| 0.1084 | 6.0 | 14934 | 0.1339 | 0.4772 | 0.6758 | 0.5594 | 0.9555 |
| 0.0981 | 7.0 | 17423 | 0.1353 | 0.5228 | 0.6861 | 0.5934 | 0.9591 |
| 0.0865 | 8.0 | 19912 | 0.1308 | 0.5924 | 0.6871 | 0.6363 | 0.9628 |
| 0.0826 | 9.0 | 22401 | 0.1250 | 0.5897 | 0.7126 | 0.6453 | 0.9630 |
| 0.0754 | 10.0 | 24890 | 0.1250 | 0.5977 | 0.7121 | 0.6499 | 0.9640 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|