File size: 2,361 Bytes
01b86eb
9fe15e8
ac54ec1
8fd7dbc
 
 
 
 
ac54ec1
 
e4abe04
 
 
01b86eb
 
e4abe04
 
01b86eb
e4abe04
01b86eb
ea63883
8fd7dbc
9fe15e8
 
 
 
 
01b86eb
e4abe04
01b86eb
e4abe04
01b86eb
e4abe04
01b86eb
e4abe04
01b86eb
e4abe04
01b86eb
e4abe04
01b86eb
e4abe04
01b86eb
e4abe04
01b86eb
e4abe04
507392e
e4abe04
 
 
 
 
ea63883
01b86eb
8fd7dbc
 
ea63883
 
9fe15e8
 
 
 
 
 
 
 
 
 
8fd7dbc
 
e4abe04
01b86eb
e4abe04
 
 
ea63883
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
base_model: bert-base-cased
license: apache-2.0
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: bert-finetuned-ner4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-finetuned-ner4

This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1250
- Precision: 0.5977
- Recall: 0.7121
- F1: 0.6499
- Accuracy: 0.9640

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2424        | 1.0   | 2489  | 0.2411          | 0.1538    | 0.3948 | 0.2214 | 0.9097   |
| 0.1952        | 2.0   | 4978  | 0.2152          | 0.2033    | 0.4518 | 0.2804 | 0.9223   |
| 0.1771        | 3.0   | 7467  | 0.1737          | 0.2826    | 0.4268 | 0.3401 | 0.9387   |
| 0.1404        | 4.0   | 9956  | 0.1531          | 0.3981    | 0.5237 | 0.4524 | 0.9479   |
| 0.126         | 5.0   | 12445 | 0.1395          | 0.4761    | 0.6188 | 0.5382 | 0.9542   |
| 0.1084        | 6.0   | 14934 | 0.1339          | 0.4772    | 0.6758 | 0.5594 | 0.9555   |
| 0.0981        | 7.0   | 17423 | 0.1353          | 0.5228    | 0.6861 | 0.5934 | 0.9591   |
| 0.0865        | 8.0   | 19912 | 0.1308          | 0.5924    | 0.6871 | 0.6363 | 0.9628   |
| 0.0826        | 9.0   | 22401 | 0.1250          | 0.5897    | 0.7126 | 0.6453 | 0.9630   |
| 0.0754        | 10.0  | 24890 | 0.1250          | 0.5977    | 0.7121 | 0.6499 | 0.9640   |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1