--- base_model: bert-base-cased license: apache-2.0 metrics: - precision - recall - f1 - accuracy tags: - generated_from_trainer model-index: - name: bert-finetuned-ner4 results: [] --- # bert-finetuned-ner4 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0913 - Precision: 0.8712 - Recall: 0.8979 - F1: 0.8844 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0612 | 1.0 | 2489 | 0.0625 | 0.8264 | 0.8552 | 0.8405 | 0.9816 | | 0.0351 | 2.0 | 4978 | 0.0643 | 0.8474 | 0.8716 | 0.8594 | 0.9831 | | 0.0189 | 3.0 | 7467 | 0.0651 | 0.8585 | 0.8995 | 0.8785 | 0.9843 | | 0.0105 | 4.0 | 9956 | 0.0811 | 0.8690 | 0.8943 | 0.8815 | 0.9847 | | 0.0047 | 5.0 | 12445 | 0.0913 | 0.8712 | 0.8979 | 0.8844 | 0.9850 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1