--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner4 results: [] --- # bert-finetuned-ner4 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1612 - Precision: 0.6881 - Recall: 0.8443 - F1: 0.7582 - Accuracy: 0.9428 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2338 | 1.0 | 2844 | 0.1673 | 0.6431 | 0.8087 | 0.7164 | 0.9389 | | 0.1542 | 2.0 | 5688 | 0.1638 | 0.6786 | 0.8411 | 0.7511 | 0.9420 | | 0.1998 | 3.0 | 8532 | 0.1612 | 0.6881 | 0.8443 | 0.7582 | 0.9428 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1