--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ner-model results: [] --- # ner-model This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1297 - Precision: 0.8229 - Recall: 0.8866 - F1: 0.8535 - Accuracy: 0.9667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1752 | 1.0 | 2489 | 0.1261 | 0.7649 | 0.8137 | 0.7885 | 0.9549 | | 0.1076 | 2.0 | 4978 | 0.1184 | 0.7881 | 0.8592 | 0.8221 | 0.9611 | | 0.074 | 3.0 | 7467 | 0.1137 | 0.7985 | 0.8802 | 0.8374 | 0.9634 | | 0.0634 | 4.0 | 9956 | 0.1239 | 0.8125 | 0.8927 | 0.8507 | 0.9651 | | 0.0387 | 5.0 | 12445 | 0.1297 | 0.8229 | 0.8866 | 0.8535 | 0.9667 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1