Natthaphon
commited on
Commit
•
8a7aa7a
1
Parent(s):
9a80df1
Added config files
Browse files- configuration_cap.py +30 -0
- modeling_cap.py +268 -0
- readme.md +5 -0
configuration_cap.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig, AutoConfig
|
2 |
+
|
3 |
+
|
4 |
+
class CLIPEncoderDecoderConfig(PretrainedConfig):
|
5 |
+
model_type = "clip-encoder-decoder"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
**kwargs):
|
10 |
+
super().__init__(**kwargs)
|
11 |
+
|
12 |
+
self.encoder = AutoConfig.from_pretrained('microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft')
|
13 |
+
self.decoder = AutoConfig.from_pretrained('airesearch/wangchanberta-base-att-spm-uncased')
|
14 |
+
self.is_encoder_decoder = True
|
15 |
+
|
16 |
+
@classmethod
|
17 |
+
def from_encoder_decoder_configs(
|
18 |
+
cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs
|
19 |
+
) -> PretrainedConfig:
|
20 |
+
r"""
|
21 |
+
Instantiate a [`VisionEncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model
|
22 |
+
configuration and decoder model configuration.
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
[`VisionEncoderDecoderConfig`]: An instance of a configuration object
|
26 |
+
"""
|
27 |
+
decoder_config.is_decoder = True
|
28 |
+
decoder_config.add_cross_attention = True
|
29 |
+
|
30 |
+
return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs)
|
modeling_cap.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import (
|
2 |
+
PreTrainedModel,
|
3 |
+
VisionEncoderDecoderModel,
|
4 |
+
VisionEncoderDecoderConfig,
|
5 |
+
AutoModel,
|
6 |
+
AutoModelForCausalLM,
|
7 |
+
AutoConfig
|
8 |
+
)
|
9 |
+
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
|
10 |
+
from torch import nn
|
11 |
+
from .configuration_cap import CLIPEncoderDecoderConfig
|
12 |
+
from typing import Optional, Tuple, Union
|
13 |
+
import torch
|
14 |
+
import gc
|
15 |
+
import os
|
16 |
+
import tempfile
|
17 |
+
|
18 |
+
|
19 |
+
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
20 |
+
"""
|
21 |
+
Shift input ids one token to the right.
|
22 |
+
"""
|
23 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
24 |
+
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
25 |
+
if decoder_start_token_id is None:
|
26 |
+
raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.")
|
27 |
+
shifted_input_ids[:, 0] = decoder_start_token_id
|
28 |
+
|
29 |
+
if pad_token_id is None:
|
30 |
+
raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.")
|
31 |
+
# replace possible -100 values in labels by `pad_token_id`
|
32 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
33 |
+
|
34 |
+
return shifted_input_ids
|
35 |
+
|
36 |
+
|
37 |
+
class CLIPEncoderDecoderModel(PreTrainedModel):
|
38 |
+
config_class = CLIPEncoderDecoderConfig
|
39 |
+
base_model_prefix = "clip_encoder_decoder"
|
40 |
+
main_input_name = "pixel_values"
|
41 |
+
supports_gradient_checkpointing = True
|
42 |
+
def __init__(
|
43 |
+
self,
|
44 |
+
config = None,
|
45 |
+
encoder = None,
|
46 |
+
decoder = None,
|
47 |
+
):
|
48 |
+
config.tie_word_embeddings = False
|
49 |
+
super().__init__(config)
|
50 |
+
|
51 |
+
encoder = AutoModel.from_config(config.encoder)
|
52 |
+
encoder_hidden_size = encoder.config.hidden_size
|
53 |
+
|
54 |
+
if decoder is None:
|
55 |
+
config.decoder.is_decoder = True
|
56 |
+
config.decoder.add_cross_attention = True
|
57 |
+
decoder = AutoModelForCausalLM.from_config(config.decoder)
|
58 |
+
|
59 |
+
self.encoder = encoder
|
60 |
+
self.decoder = decoder
|
61 |
+
|
62 |
+
self.encoder.config = self.config.encoder
|
63 |
+
self.decoder.config = self.config.decoder
|
64 |
+
|
65 |
+
self.enc_to_dec_proj = nn.Linear(encoder_hidden_size, self.decoder.config.hidden_size)
|
66 |
+
|
67 |
+
def get_encoder(self):
|
68 |
+
return self.encoder
|
69 |
+
|
70 |
+
def get_decoder(self):
|
71 |
+
return self.decoder
|
72 |
+
|
73 |
+
def get_output_embeddings(self):
|
74 |
+
return self.decoder.get_output_embeddings()
|
75 |
+
|
76 |
+
def set_output_embeddings(self, new_embeddings):
|
77 |
+
return self.decoder.set_output_embeddings(new_embeddings)
|
78 |
+
|
79 |
+
@classmethod
|
80 |
+
def from_encoder_decoder_pretrained(
|
81 |
+
cls,
|
82 |
+
encoder_pretrained_model_name_or_path: str = None,
|
83 |
+
decoder_pretrained_model_name_or_path: str = None,
|
84 |
+
*model_args,
|
85 |
+
**kwargs,
|
86 |
+
) -> PreTrainedModel:
|
87 |
+
kwargs_encoder = {
|
88 |
+
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
|
89 |
+
}
|
90 |
+
|
91 |
+
kwargs_decoder = {
|
92 |
+
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
93 |
+
}
|
94 |
+
|
95 |
+
# remove encoder, decoder kwargs from kwargs
|
96 |
+
for key in kwargs_encoder.keys():
|
97 |
+
del kwargs["encoder_" + key]
|
98 |
+
for key in kwargs_decoder.keys():
|
99 |
+
del kwargs["decoder_" + key]
|
100 |
+
|
101 |
+
# Load and initialize the encoder and decoder
|
102 |
+
# The distinction between encoder and decoder at the model level is made
|
103 |
+
# by the value of the flag `is_decoder` that we need to set correctly.
|
104 |
+
encoder = kwargs_encoder.pop("model", None)
|
105 |
+
if encoder is None:
|
106 |
+
if encoder_pretrained_model_name_or_path is None:
|
107 |
+
raise ValueError(
|
108 |
+
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
|
109 |
+
"to be defined."
|
110 |
+
)
|
111 |
+
|
112 |
+
if "config" not in kwargs_encoder:
|
113 |
+
encoder_config, kwargs_encoder = AutoConfig.from_pretrained(
|
114 |
+
encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True
|
115 |
+
)
|
116 |
+
|
117 |
+
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
|
118 |
+
encoder_config.is_decoder = False
|
119 |
+
encoder_config.add_cross_attention = False
|
120 |
+
|
121 |
+
kwargs_encoder["config"] = encoder_config
|
122 |
+
|
123 |
+
encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder)
|
124 |
+
|
125 |
+
decoder = kwargs_decoder.pop("model", None)
|
126 |
+
if decoder is None:
|
127 |
+
if decoder_pretrained_model_name_or_path is None:
|
128 |
+
raise ValueError(
|
129 |
+
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
|
130 |
+
"to be defined."
|
131 |
+
)
|
132 |
+
|
133 |
+
if "config" not in kwargs_decoder:
|
134 |
+
decoder_config, kwargs_decoder = AutoConfig.from_pretrained(
|
135 |
+
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
|
136 |
+
)
|
137 |
+
|
138 |
+
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
|
139 |
+
decoder_config.is_decoder = True
|
140 |
+
decoder_config.add_cross_attention = True
|
141 |
+
|
142 |
+
kwargs_decoder["config"] = decoder_config
|
143 |
+
|
144 |
+
decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
|
145 |
+
|
146 |
+
# instantiate config with corresponding kwargs
|
147 |
+
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
|
148 |
+
|
149 |
+
# make sure input & output embeddings is not tied
|
150 |
+
config.tie_word_embeddings = False
|
151 |
+
return cls(encoder=encoder, decoder=decoder, config=config)
|
152 |
+
|
153 |
+
def forward(
|
154 |
+
self,
|
155 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
156 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
157 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
158 |
+
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
|
159 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
160 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
161 |
+
labels: Optional[torch.LongTensor] = None,
|
162 |
+
use_cache: Optional[bool] = None,
|
163 |
+
output_attentions: Optional[bool] = None,
|
164 |
+
output_hidden_states: Optional[bool] = None,
|
165 |
+
return_dict: Optional[bool] = None,
|
166 |
+
**kwargs,
|
167 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
168 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
169 |
+
|
170 |
+
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
|
171 |
+
|
172 |
+
kwargs_decoder = {
|
173 |
+
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
174 |
+
}
|
175 |
+
|
176 |
+
if encoder_outputs is None:
|
177 |
+
if pixel_values is None:
|
178 |
+
raise ValueError("You have to specify pixel_values")
|
179 |
+
|
180 |
+
encoder_outputs = self.encoder(
|
181 |
+
pixel_values,
|
182 |
+
output_attentions=output_attentions,
|
183 |
+
output_hidden_states=output_hidden_states,
|
184 |
+
return_dict=return_dict,
|
185 |
+
**kwargs_encoder,
|
186 |
+
)
|
187 |
+
elif isinstance(encoder_outputs, tuple):
|
188 |
+
encoder_outputs = BaseModelOutput(*encoder_outputs)
|
189 |
+
|
190 |
+
encoder_hidden_states = encoder_outputs[0]
|
191 |
+
|
192 |
+
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
|
193 |
+
|
194 |
+
# else:
|
195 |
+
encoder_attention_mask = None
|
196 |
+
|
197 |
+
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
|
198 |
+
decoder_input_ids = shift_tokens_right(
|
199 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
200 |
+
)
|
201 |
+
|
202 |
+
# Decode
|
203 |
+
decoder_outputs = self.decoder(
|
204 |
+
input_ids=decoder_input_ids,
|
205 |
+
attention_mask=decoder_attention_mask,
|
206 |
+
encoder_hidden_states=encoder_hidden_states,
|
207 |
+
encoder_attention_mask=encoder_attention_mask,
|
208 |
+
inputs_embeds=decoder_inputs_embeds,
|
209 |
+
output_attentions=output_attentions,
|
210 |
+
output_hidden_states=output_hidden_states,
|
211 |
+
use_cache=use_cache,
|
212 |
+
past_key_values=past_key_values,
|
213 |
+
return_dict=return_dict,
|
214 |
+
**kwargs_decoder,
|
215 |
+
)
|
216 |
+
|
217 |
+
# Compute loss independent from decoder (as some shift the logits inside them)
|
218 |
+
loss = None
|
219 |
+
if labels is not None:
|
220 |
+
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
|
221 |
+
loss_fct = nn.CrossEntropyLoss()
|
222 |
+
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))
|
223 |
+
|
224 |
+
if not return_dict:
|
225 |
+
if loss is not None:
|
226 |
+
return (loss,) + decoder_outputs + encoder_outputs
|
227 |
+
else:
|
228 |
+
return decoder_outputs + encoder_outputs
|
229 |
+
|
230 |
+
return Seq2SeqLMOutput(
|
231 |
+
loss=loss,
|
232 |
+
logits=decoder_outputs.logits,
|
233 |
+
past_key_values=decoder_outputs.past_key_values,
|
234 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
235 |
+
decoder_attentions=decoder_outputs.attentions,
|
236 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
237 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
238 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
239 |
+
encoder_attentions=encoder_outputs.attentions,
|
240 |
+
)
|
241 |
+
|
242 |
+
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
243 |
+
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
|
244 |
+
|
245 |
+
def prepare_inputs_for_generation(
|
246 |
+
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs
|
247 |
+
):
|
248 |
+
decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values)
|
249 |
+
decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None
|
250 |
+
input_dict = {
|
251 |
+
"attention_mask": attention_mask,
|
252 |
+
"decoder_attention_mask": decoder_attention_mask,
|
253 |
+
"decoder_input_ids": decoder_inputs["input_ids"],
|
254 |
+
"encoder_outputs": encoder_outputs,
|
255 |
+
"past_key_values": decoder_inputs["past_key_values"],
|
256 |
+
"use_cache": use_cache,
|
257 |
+
}
|
258 |
+
return input_dict
|
259 |
+
|
260 |
+
def resize_token_embeddings(self, *args, **kwargs):
|
261 |
+
raise NotImplementedError(
|
262 |
+
"Resizing the embedding layers via the VisionEncoderDecoderModel directly is not supported.Please use the"
|
263 |
+
" respective methods of the wrapped decoder object (model.decoder.resize_token_embeddings(...))"
|
264 |
+
)
|
265 |
+
|
266 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
267 |
+
# apply decoder cache reordering here
|
268 |
+
return self.decoder._reorder_cache(past_key_values, beam_idx)
|
readme.md
CHANGED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Thai Image Captioning
|
2 |
+
A
|
3 |
+
|
4 |
+
# Acknowledgement
|
5 |
+
This work is partially supported by the Program Management Unit for Human Resources & Institutional Development, Research and Innovation (PMU-B) [Grant number B04G640107]
|