File size: 2,041 Bytes
01305e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: Malmika/T5-Small-Sinhala-Sumarization
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: T5-Small-Sinhala-Sumarization-test3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# T5-Small-Sinhala-Sumarization-test3

This model is a fine-tuned version of [Malmika/T5-Small-Sinhala-Sumarization](https://huggingface.co/Malmika/T5-Small-Sinhala-Sumarization) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0304
- Rouge1: 0.1355
- Rouge2: 0.0618
- Rougel: 0.1354
- Rougelsum: 0.1356
- Gen Len: 17.8198

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 0.0959        | 1.0   | 4333  | 0.0560          | 0.1357 | 0.062  | 0.1357 | 0.1358    | 17.8575 |
| 0.0531        | 2.0   | 8666  | 0.0367          | 0.1355 | 0.0619 | 0.1355 | 0.1357    | 17.8214 |
| 0.0406        | 3.0   | 12999 | 0.0350          | 0.1355 | 0.0619 | 0.1355 | 0.1357    | 17.8213 |
| 0.0342        | 4.0   | 17332 | 0.0328          | 0.1355 | 0.0618 | 0.1354 | 0.1356    | 17.8198 |
| 0.0323        | 5.0   | 21665 | 0.0304          | 0.1355 | 0.0618 | 0.1354 | 0.1356    | 17.8198 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1