Nazzyk commited on
Commit
55743f9
1 Parent(s): db2bbf0

Longer trained PPO LunarLander-v2 agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 256.96 +/- 24.62
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 265.96 +/- 18.28
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f54424f8d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f54424f8dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f54424f8e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f54424f8ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f54424f8f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f54424fc040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f54424fc0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f54424fc160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f54424fc1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f54424fc280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f54424fc310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f54424fc3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f54424fa5c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678624108382618152, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYj1ryx17k/fxwBv4tUnz4exUA8+LIXvQAAAAAAAAAAhjUtvgpxrD5badw9iyZLvu+yk70MXak9AAAAAAAAAADNRWe9VSbFPrW04TwL6ZW+nLobvTW6Dz0AAAAAAAAAAJpJ8bpFu9M8DR9+vfXR9709lJC9Zqs8vQAAAAAAAAAAGugOvY4hgT7SGEY+KrQFvrbnkj2w0849AAAAAAAAAADNLuo8aem6P/b5mj4QSgw+Fqqpu0BHUD0AAAAAAAAAAJq3hz2/BwE/s7MgvHVZtb5WsSQ9bn9UvQAAAAAAAAAAmnvSPHjzuD8SU/c9l8UkvvHBG7xTdEw9AAAAAAAAAACTBwG+5WQTPgVcSD4R8xq+gnmBu3i1WboAAAAAAAAAAE1xSj2yI5U/o3kuPoyr47719sA9rhy7PQAAAAAAAAAA2qjPvY9uO7rI5zC6AOAaMmqtDTrS+E05AACAPwAAAACaAVg8aynrPalTjjxe9j2+Iv2TPBYtUL0AAAAAAAAAANo6gb3XXRK7duzzO/Y2iDyPbSs8+/1rvQAAgD8AAIA/s8U2PcSmmj9dRg0+b/0Iv3/agz37w986AAAAAAAAAADzDJm+o8smPzjn4T23tZa+1RoYvkuq1j0AAAAAAAAAAGbJtryHObA/6iBwvh30jL6go828UBLJvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhSf0+hM+cECUhpRSlIwBbJRNMAGMAXSUR0CZAalWOp84dX2UKGgGaAloD0MISSu+obBhckCUhpRSlGgVTWsBaBZHQJkB1emelKt1fZQoaAZoCWgPQwhNgjek0YtyQJSGlFKUaBVNEQFoFkdAmQKJBkZrHnV9lChoBmgJaA9DCG9kHvkDemxAlIaUUpRoFU1DAWgWR0CZA7dp7CzkdX2UKGgGaAloD0MIL8GpD+QRcECUhpRSlGgVTVABaBZHQJkD1W1c+q11fZQoaAZoCWgPQwg7qS9Lu8NxQJSGlFKUaBVNHQFoFkdAmQTHP3SKFnV9lChoBmgJaA9DCENYjSVs2nJAlIaUUpRoFU0GAWgWR0CZBToCuEEldX2UKGgGaAloD0MIqfV+o51xcUCUhpRSlGgVTR4BaBZHQJkFY3m3fAN1fZQoaAZoCWgPQwheaK7TSGswwJSGlFKUaBVLzWgWR0CZBcPIXCTEdX2UKGgGaAloD0MIXOffLjvBcUCUhpRSlGgVTRwBaBZHQJkG1VYISlF1fZQoaAZoCWgPQwjryfyj76FyQJSGlFKUaBVNMwFoFkdAmQbWFev6j3V9lChoBmgJaA9DCNeEtMYgMW5AlIaUUpRoFUv7aBZHQJkIcMSbpeN1fZQoaAZoCWgPQwjtSWBzDuJvQJSGlFKUaBVNBgFoFkdAmQijfJmuknV9lChoBmgJaA9DCF5Ih4cw629AlIaUUpRoFU0gAWgWR0CZCcuG9HtndX2UKGgGaAloD0MIwEF79fFMP0CUhpRSlGgVS9VoFkdAmQnxn8Koh3V9lChoBmgJaA9DCGYQH9ix6nFAlIaUUpRoFU0rAWgWR0CZCn2KEWZadX2UKGgGaAloD0MI6dUApaEAb0CUhpRSlGgVTTEBaBZHQJkK3su3+dd1fZQoaAZoCWgPQwhoeR7cnZReQJSGlFKUaBVN6ANoFkdAmQs3GGVRk3V9lChoBmgJaA9DCMdnsn9eMXJAlIaUUpRoFU0rAWgWR0CZC3k7fYSQdX2UKGgGaAloD0MIT85Q3LGUcUCUhpRSlGgVTawBaBZHQJkMQ62fChx1fZQoaAZoCWgPQwilMsUcBP5wQJSGlFKUaBVNHAFoFkdAmQxBYA80UHV9lChoBmgJaA9DCG9JDthVxm9AlIaUUpRoFUv/aBZHQJkMXjFQ2uR1fZQoaAZoCWgPQwg0gLdAgrBwQJSGlFKUaBVNBQFoFkdAmQzhLXcxkHV9lChoBmgJaA9DCILix5g7R25AlIaUUpRoFU0OAWgWR0CZDV+FDfFadX2UKGgGaAloD0MIgsR29wC7bkCUhpRSlGgVTQ0BaBZHQJkN2sfaHsV1fZQoaAZoCWgPQwiUiVsFceRwQJSGlFKUaBVNGAFoFkdAmQ/QkxASnXV9lChoBmgJaA9DCJwVURP9R3FAlIaUUpRoFU0fAWgWR0CZEBJrLyMDdX2UKGgGaAloD0MIWpwxzEkgcUCUhpRSlGgVTRMBaBZHQJkRlet0V8F1fZQoaAZoCWgPQwgXmus0ku1wQJSGlFKUaBVNIQFoFkdAmRJtZid8RnV9lChoBmgJaA9DCK4oJQQrCXJAlIaUUpRoFU0tAWgWR0CZFJhcqvvCdX2UKGgGaAloD0MIjErqBHTicUCUhpRSlGgVTRsBaBZHQJkVXaIvalF1fZQoaAZoCWgPQwhTQUXVLwJyQJSGlFKUaBVNEwFoFkdAmRV3qqwQlXV9lChoBmgJaA9DCClAFMzYeHFAlIaUUpRoFU0pAWgWR0CZFwaCcwxndX2UKGgGaAloD0MIoFOQnw1Kb0CUhpRSlGgVTRIBaBZHQJkXRH/cWTJ1fZQoaAZoCWgPQwg983LYPUNxQJSGlFKUaBVNAgFoFkdAmRfbBoEjgXV9lChoBmgJaA9DCGueI/JdHHJAlIaUUpRoFU0qAWgWR0CZGHUwSJ0odX2UKGgGaAloD0MImdnnMcrTcECUhpRSlGgVTW8BaBZHQJkY+fGuLaV1fZQoaAZoCWgPQwhgP8QGCzNNQJSGlFKUaBVL22gWR0CZGfwpvxYrdX2UKGgGaAloD0MIk1FlGDeycUCUhpRSlGgVTWEBaBZHQJkbKMNtqHp1fZQoaAZoCWgPQwgHCVG+YFNxQJSGlFKUaBVNMAFoFkdAmRs2k8A7xXV9lChoBmgJaA9DCA7Y1eRpi3FAlIaUUpRoFU1hAWgWR0CZHMhW5paidX2UKGgGaAloD0MI14nL8colckCUhpRSlGgVTTABaBZHQJkdZz8xbjd1fZQoaAZoCWgPQwhs6dFUj+pwQJSGlFKUaBVNGwFoFkdAmR55qqOtGXV9lChoBmgJaA9DCBx4tdxZYnBAlIaUUpRoFU0pAWgWR0CZNJxOclPadX2UKGgGaAloD0MIRbqfU9CIckCUhpRSlGgVTRQBaBZHQJk1aoBJZnt1fZQoaAZoCWgPQwjVy+80GSlxQJSGlFKUaBVNBAFoFkdAmTVqk/KQrHV9lChoBmgJaA9DCJ3WbVB7aHFAlIaUUpRoFUvqaBZHQJk1mmNzbN91fZQoaAZoCWgPQwjzHmeacGpxQJSGlFKUaBVL/mgWR0CZNqTTOPeYdX2UKGgGaAloD0MIste7P14wckCUhpRSlGgVTQMBaBZHQJk3NHEuQIV1fZQoaAZoCWgPQwgfEynNJnFwQJSGlFKUaBVNQwFoFkdAmTdhwhnrZHV9lChoBmgJaA9DCAZ/v5gtm21AlIaUUpRoFU0nAWgWR0CZN5iW3Sa3dX2UKGgGaAloD0MIZDxKJXwNckCUhpRSlGgVTSkBaBZHQJk4s/xDst11fZQoaAZoCWgPQwjCiejXFuNwQJSGlFKUaBVNLgFoFkdAmTmaDK5kLHV9lChoBmgJaA9DCMgljjwQ5m5AlIaUUpRoFU0ZAWgWR0CZOcsHSncddX2UKGgGaAloD0MInbzIBPy/cECUhpRSlGgVTQUBaBZHQJk6W1F6Rhd1fZQoaAZoCWgPQwi+pDFaR3FwQJSGlFKUaBVNBwFoFkdAmTrZcLSeAnV9lChoBmgJaA9DCDFgyVXsdnBAlIaUUpRoFU0XAWgWR0CZPBdGy5ZsdX2UKGgGaAloD0MIev60UZ35bECUhpRSlGgVTTUBaBZHQJk+SPdVNpN1fZQoaAZoCWgPQwhYyjLEsVhyQJSGlFKUaBVNJAFoFkdAmT6toi9qUXV9lChoBmgJaA9DCE890uA20HJAlIaUUpRoFU0mAWgWR0CZPsBiCrcTdX2UKGgGaAloD0MIaverAF9Jc0CUhpRSlGgVTToBaBZHQJk/7O/tY0V1fZQoaAZoCWgPQwjoFU89kjhwQJSGlFKUaBVNGwFoFkdAmUAg+pwS8XV9lChoBmgJaA9DCJEJ+DWSpnFAlIaUUpRoFU3XAWgWR0CZQIArxy4ndX2UKGgGaAloD0MIXOMz2X8jcUCUhpRSlGgVTRABaBZHQJlBBqIrOJN1fZQoaAZoCWgPQwjq6Lga2UZxQJSGlFKUaBVNGAFoFkdAmUERegL7XXV9lChoBmgJaA9DCJ4pdF7jxXBAlIaUUpRoFU0rAWgWR0CZQZt8NQTFdX2UKGgGaAloD0MI8aDZdW/vbUCUhpRSlGgVTRIBaBZHQJlCfTOPeYV1fZQoaAZoCWgPQwi7KHrg4wlxQJSGlFKUaBVNAwFoFkdAmUM4QJ5VwXV9lChoBmgJaA9DCL/09ufinXFAlIaUUpRoFU0aAWgWR0CZQ9inYQJ5dX2UKGgGaAloD0MIqDY4Ef2TWUCUhpRSlGgVTegDaBZHQJlEM6dUbUB1fZQoaAZoCWgPQwgbSYJwBa5wQJSGlFKUaBVNMgFoFkdAmUZWFrVOK3V9lChoBmgJaA9DCHbdW5EYHHJAlIaUUpRoFU1EAWgWR0CZRmMju8brdX2UKGgGaAloD0MI4gFlU+6dcECUhpRSlGgVTR8BaBZHQJlHQz544ZN1fZQoaAZoCWgPQwhnZJC7iB9wQJSGlFKUaBVNCwFoFkdAmUlHz6JqI3V9lChoBmgJaA9DCD7o2az6BG9AlIaUUpRoFU0GAWgWR0CZSb1Oj7AMdX2UKGgGaAloD0MIGTc10DwJcECUhpRSlGgVTRIBaBZHQJlKQgq3Eyd1fZQoaAZoCWgPQwh8SPjeX09uQJSGlFKUaBVL/WgWR0CZStlyzXz2dX2UKGgGaAloD0MIm3XG98XXbUCUhpRSlGgVTSEBaBZHQJlMsPJ7sv91fZQoaAZoCWgPQwgEVg4t8tFwQJSGlFKUaBVNGAFoFkdAmUzWphnanXV9lChoBmgJaA9DCLvRx3wA2HBAlIaUUpRoFU0NAWgWR0CZTpmJ3xFzdX2UKGgGaAloD0MIyeTUzjDlcUCUhpRSlGgVTTQBaBZHQJlOr74zrNZ1fZQoaAZoCWgPQwgcCwqDMgJwQJSGlFKUaBVNUAFoFkdAmVAG6K+BYnV9lChoBmgJaA9DCFPNrKUAmXBAlIaUUpRoFU0dAWgWR0CZUFhYeT3ZdX2UKGgGaAloD0MIbr4R3XP/ckCUhpRSlGgVTRYBaBZHQJlQxujynUF1fZQoaAZoCWgPQwjt8UI6fAFyQJSGlFKUaBVNXgFoFkdAmVFU9ECvHXV9lChoBmgJaA9DCNqrj4c+IHJAlIaUUpRoFU0ZAWgWR0CZUVTKDCgsdX2UKGgGaAloD0MI0/VE14VjbkCUhpRSlGgVTQsBaBZHQJlTeyt3fQ91fZQoaAZoCWgPQwizXgzlBCJxQJSGlFKUaBVNPgFoFkdAmVZiIUJv53V9lChoBmgJaA9DCHIz3IAP9XFAlIaUUpRoFU0xAWgWR0CZVvZjQRf4dX2UKGgGaAloD0MIU8vW+iIdb0CUhpRSlGgVS/RoFkdAmVet52QnyHV9lChoBmgJaA9DCAn84ec/L25AlIaUUpRoFU0xAWgWR0CZWbyULUkOdX2UKGgGaAloD0MICOi+nNlSbkCUhpRSlGgVTTsBaBZHQJlZ12s7uD11fZQoaAZoCWgPQwjbUgd5PQVuQJSGlFKUaBVNCAFoFkdAmVp1nM+u/3V9lChoBmgJaA9DCKRQFr5+a3BAlIaUUpRoFU04AWgWR0CZWo5ksjFAdX2UKGgGaAloD0MINL3EWCZlbUCUhpRSlGgVTSMBaBZHQJld2KyfL9x1fZQoaAZoCWgPQwjyW3SyFCtxQJSGlFKUaBVNIgFoFkdAmV3bbDdgv3V9lChoBmgJaA9DCBgkfVrFXXFAlIaUUpRoFU0NAWgWR0CZXoVTJhfCdX2UKGgGaAloD0MIlPqytFNJcUCUhpRSlGgVTQ0BaBZHQJlfAnE2pAF1fZQoaAZoCWgPQwjhJM0fU2ltQJSGlFKUaBVNAQFoFkdAmV8Cj+Jgs3V9lChoBmgJaA9DCB8RUyIJg21AlIaUUpRoFU0iAWgWR0CZXzGN70FsdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8a352ddaf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8a352ddb80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8a352ddc10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8a352ddca0>", "_build": "<function ActorCriticPolicy._build at 0x7f8a352ddd30>", "forward": "<function ActorCriticPolicy.forward at 0x7f8a352dddc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8a352dde50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8a352ddee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8a352ddf70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8a352e3040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8a352e30d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8a352e3160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8a352e17c0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5600000, "_total_timesteps": 55000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679351599075590843, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2k/L0tAhk/CLeEPfCG/b6hFJK9bj54PQAAAAAAAAAAZgCLvFyLQbpV7ly9S2tYMlASPLuOvAG0AACAPwAAgD8g1CM+7667Pp7Mpr7eUIS+NLVXPDaj9r0AAAAAAAAAAPO+sz0UNoa66pqMNTPlN69YpCG7QOmttAAAgD8AAIA/M8v/u3d/ST8ad9W7NaQQv9/gZ70anYa7AAAAAAAAAAAALzm9hXOAuRMQ0Dma9EI0uYSRO5509LgAAIA/AACAP6YBqb3SLdK7NTxqvuLBSb4N2zs916kuPwAAgD8AAIA/zYpQvHvOibr65iuzhcGqr1CQfzqIp88zAACAPwAAgD+aYe27SMuIuq7GgrtyL4w8ix1mu5M7dD0AAIA/AACAP8AyDb51n9Q+WQYVPsCF+74oacC89QPBPQAAAAAAAAAAjfDSvSkkcbparZy7NNWxNknx/rpKn6w6AAAAAAAAAADaotI9/091P7I4RT6M9Rq/snHOPUAeWD0AAAAAAAAAADN33rt7mqi6L1pGNJUQJK6GoKC6tuiPswAAgD8AAIA/5soRvfm+zT4iTyI+S9zzvtwOjD2wbVM9AAAAAAAAAACm9eM9g9MBPxAD1T33lwa/QHPOPShwWz0AAAAAAAAAAIBBHj0K10638BfSNGFBAzBCK1m6A5kJtAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.8984192, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXoWUn9Q2c0CUhpRSlIwBbJRLtYwBdJRHQK2u8xRl6JJ1fZQoaAZoCWgPQwjHYwYqY8BwQJSGlFKUaBVLuWgWR0CtrxoSteUqdX2UKGgGaAloD0MIar3faEcOcECUhpRSlGgVS9hoFkdAra8geV9nb3V9lChoBmgJaA9DCJSHhVqT+HJAlIaUUpRoFUvsaBZHQK2vR/io86p1fZQoaAZoCWgPQwjVPEfkeyJzQJSGlFKUaBVLvmgWR0Ctr2ZWBBiTdX2UKGgGaAloD0MIwCMqVHftc0CUhpRSlGgVS9loFkdAra9xPykKu3V9lChoBmgJaA9DCLFs5pBUnW9AlIaUUpRoFUvoaBZHQK2v9ZVXFLp1fZQoaAZoCWgPQwg8E5okFtFzQJSGlFKUaBVNLQFoFkdArbAxWzWwvHV9lChoBmgJaA9DCDSeCOL8MnRAlIaUUpRoFUvdaBZHQK2wZJeVs1t1fZQoaAZoCWgPQwhpkIKn0IdyQJSGlFKUaBVLzWgWR0CtsJM8gZCOdX2UKGgGaAloD0MIGxNiLqlUcECUhpRSlGgVS9RoFkdArbDPdsSCe3V9lChoBmgJaA9DCJc7M8FwgHBAlIaUUpRoFUvWaBZHQK2xC28Zk091fZQoaAZoCWgPQwj8VBUaCKVyQJSGlFKUaBVLvmgWR0CtsRfn4fwJdX2UKGgGaAloD0MIOs0C7Y5Mb0CUhpRSlGgVS95oFkdArbEsMuvll3V9lChoBmgJaA9DCNHno4z4OXFAlIaUUpRoFUvJaBZHQK2xPXOGCZp1fZQoaAZoCWgPQwjey31yFMBwQJSGlFKUaBVL3GgWR0CtsT+qJdjYdX2UKGgGaAloD0MI9iNFZFhlckCUhpRSlGgVS8VoFkdArbFe+Eh7mnV9lChoBmgJaA9DCKmkTkAT5HBAlIaUUpRoFU0QAWgWR0CtsW3xe9i+dX2UKGgGaAloD0MIJqyNsRMjc0CUhpRSlGgVTQcBaBZHQK2xoDZlFtt1fZQoaAZoCWgPQwjtSstIfZVzQJSGlFKUaBVL2WgWR0CtsbIr4FibdX2UKGgGaAloD0MIwO0JEttLcUCUhpRSlGgVS+BoFkdArbHNVYISlHV9lChoBmgJaA9DCB767laWynJAlIaUUpRoFUuzaBZHQK2yEUD+zdF1fZQoaAZoCWgPQwi95erHJl5vQJSGlFKUaBVL0GgWR0CtsiBo/RmcdX2UKGgGaAloD0MIe2r11ZU3cUCUhpRSlGgVS75oFkdArbJYku6ErXV9lChoBmgJaA9DCItQbAUNxnFAlIaUUpRoFUvPaBZHQK2yrcoH9m91fZQoaAZoCWgPQwjgL2ZL1uhvQJSGlFKUaBVLumgWR0CtsyJbdJrddX2UKGgGaAloD0MIUwPN59w8cECUhpRSlGgVS8loFkdArbMoaUA1enV9lChoBmgJaA9DCL2mBwWlWnFAlIaUUpRoFUvcaBZHQK2zVLnLaEl1fZQoaAZoCWgPQwiughjo2sNxQJSGlFKUaBVLxGgWR0Cts2iAc1fmdX2UKGgGaAloD0MIwY7/AsFecECUhpRSlGgVS95oFkdArbN9UMoc73V9lChoBmgJaA9DCDCA8KFELXBAlIaUUpRoFUvLaBZHQK2zjpnHvMN1fZQoaAZoCWgPQwgZ5ZmXw7pyQJSGlFKUaBVNCQFoFkdArbOisCDEnHV9lChoBmgJaA9DCIxJfy8FNm5AlIaUUpRoFUvkaBZHQK2zoa/h2nt1fZQoaAZoCWgPQwiuvOR/8hlvQJSGlFKUaBVL1GgWR0Cts9hzeXRgdX2UKGgGaAloD0MI3st9cpQ8ckCUhpRSlGgVS89oFkdArbP6jrRjSXV9lChoBmgJaA9DCFJGXABamHFAlIaUUpRoFUvlaBZHQK20FWf9P1t1fZQoaAZoCWgPQwhSLLe0GhRxQJSGlFKUaBVL0WgWR0CttFqwIMScdX2UKGgGaAloD0MIKsWOxiEfckCUhpRSlGgVS+VoFkdArbR9+RYA83V9lChoBmgJaA9DCLt7gO5LsnBAlIaUUpRoFUvbaBZHQK20sQAdXDF1fZQoaAZoCWgPQwiZS6q2mxtlQJSGlFKUaBVN6ANoFkdArbT5ylvZRXV9lChoBmgJaA9DCB41JsSc+nFAlIaUUpRoFUvvaBZHQK21PXGwRoR1fZQoaAZoCWgPQwi2gNB6+FdyQJSGlFKUaBVL2mgWR0CttWQXhwVCdX2UKGgGaAloD0MIrS8S2jKicECUhpRSlGgVS71oFkdArbVmMqBmPHV9lChoBmgJaA9DCHKkMzBynW9AlIaUUpRoFUvYaBZHQK21mWAwwkB1fZQoaAZoCWgPQwjMeca+ZC1zQJSGlFKUaBVL6WgWR0CttbTtCzC2dX2UKGgGaAloD0MI6uqOxbZKb0CUhpRSlGgVS95oFkdArbXMrkKeCnV9lChoBmgJaA9DCI/Ey9O5KHFAlIaUUpRoFUvaaBZHQK211LwnYxt1fZQoaAZoCWgPQwijBz4GK+pyQJSGlFKUaBVLzWgWR0CttejTKDChdX2UKGgGaAloD0MIPiKmRNJ9cUCUhpRSlGgVS8xoFkdArbYFgUlAvHV9lChoBmgJaA9DCE8IHXQJsHFAlIaUUpRoFU0FAWgWR0CtvBzGPxQSdX2UKGgGaAloD0MI3eo56b2eckCUhpRSlGgVS8JoFkdArbwzb349HXV9lChoBmgJaA9DCC6sG+/OpHJAlIaUUpRoFUvraBZHQK28aDoQnQZ1fZQoaAZoCWgPQwhi83FtaKZzQJSGlFKUaBVL6mgWR0CtvQDXWe6JdX2UKGgGaAloD0MIrDqrBXasc0CUhpRSlGgVS+JoFkdArb01r9ETg3V9lChoBmgJaA9DCFQcB16t+nJAlIaUUpRoFUu0aBZHQK29miQDFId1fZQoaAZoCWgPQwiCqtGrQc5wQJSGlFKUaBVL+WgWR0Ctvg2a2F37dX2UKGgGaAloD0MIowG8BVIndECUhpRSlGgVS+BoFkdArb4S8tf5UXV9lChoBmgJaA9DCBA9KZPaxnJAlIaUUpRoFUvfaBZHQK2+UZ7Xxvx1fZQoaAZoCWgPQwjzBMJO8QN0QJSGlFKUaBVLx2gWR0CtvnGtp22YdX2UKGgGaAloD0MIOdOE7WcBcECUhpRSlGgVS9NoFkdArb523azu4XV9lChoBmgJaA9DCMk9Xd0xTHFAlIaUUpRoFUvLaBZHQK2+rDFZPmB1fZQoaAZoCWgPQwh48umxLUVxQJSGlFKUaBVL12gWR0CtvsqPXCj2dX2UKGgGaAloD0MI8uuH2KA0cUCUhpRSlGgVS8NoFkdArb7ZYFJQL3V9lChoBmgJaA9DCNNocjGG+HFAlIaUUpRoFUusaBZHQK2+1rfLs8h1fZQoaAZoCWgPQwgW26Si8fFyQJSGlFKUaBVLvGgWR0Ctvx8biqACdX2UKGgGaAloD0MIMPFHUSeKc0CUhpRSlGgVS7ZoFkdArb87awljVnV9lChoBmgJaA9DCGPwMO2b7m1AlIaUUpRoFU0AAWgWR0Ctv4BG6PKddX2UKGgGaAloD0MI+kUJ+sv7cUCUhpRSlGgVS7loFkdArb/88La24XV9lChoBmgJaA9DCNuK/WW3YHFAlIaUUpRoFUvPaBZHQK3AIO938oB1fZQoaAZoCWgPQwjNAYI5+ptwQJSGlFKUaBVLwWgWR0CtwHYx1xKhdX2UKGgGaAloD0MIRidLrXelcECUhpRSlGgVS8doFkdArcDuKKpDNXV9lChoBmgJaA9DCJm8AWb+GXFAlIaUUpRoFUvcaBZHQK3BKQyylep1fZQoaAZoCWgPQwhmFMstLZ5vQJSGlFKUaBVL1WgWR0CtwYLMs6JZdX2UKGgGaAloD0MIXMZNDfT6ckCUhpRSlGgVTQABaBZHQK3BwHRCx/x1fZQoaAZoCWgPQwgnTu53KDdzQJSGlFKUaBVL+2gWR0CtwcjAi3XqdX2UKGgGaAloD0MIE0n0MgqhcUCUhpRSlGgVS+VoFkdArcHa0tyxRnV9lChoBmgJaA9DCKg0YmbfmnFAlIaUUpRoFUvmaBZHQK3B24VARkF1fZQoaAZoCWgPQwhDVUyln45xQJSGlFKUaBVL+GgWR0CtwgT4cm0FdX2UKGgGaAloD0MIsYf2sYJkb0CUhpRSlGgVTQ4BaBZHQK3CAvL5h0B1fZQoaAZoCWgPQwiQoPgxJm1xQJSGlFKUaBVLvWgWR0Ctwk48uBczdX2UKGgGaAloD0MIMo6R7JHBcUCUhpRSlGgVTQIBaBZHQK3CX7k4m1J1fZQoaAZoCWgPQwjajxSRYedxQJSGlFKUaBVL7GgWR0Ctwm9bPhQ4dX2UKGgGaAloD0MIBOJ1/QIhb0CUhpRSlGgVS9xoFkdArcMAy2x6fXV9lChoBmgJaA9DCAPS/geYVHJAlIaUUpRoFUv3aBZHQK3DD1V5rxl1fZQoaAZoCWgPQwhwzR39r2RvQJSGlFKUaBVL0WgWR0Ctwz1gx8D0dX2UKGgGaAloD0MIMdEgBc86cUCUhpRSlGgVS+JoFkdArcOze/Ho5nV9lChoBmgJaA9DCMsTCDtFpW5AlIaUUpRoFUu9aBZHQK3D9tvXK8t1fZQoaAZoCWgPQwgTJ/c7FA9wQJSGlFKUaBVLx2gWR0Ctw/sdDIBBdX2UKGgGaAloD0MIOX8TCpH1bkCUhpRSlGgVS95oFkdArcQEqpcX33V9lChoBmgJaA9DCAw7jEn/THJAlIaUUpRoFUvGaBZHQK3EEhpQDV91fZQoaAZoCWgPQwi2gTtQJwtxQJSGlFKUaBVLzWgWR0CtxBSVGCqZdX2UKGgGaAloD0MINLkYA+tybkCUhpRSlGgVS8VoFkdArcQ1F+d9UnV9lChoBmgJaA9DCH80nDK3bXJAlIaUUpRoFUuuaBZHQK3EZe54GEB1fZQoaAZoCWgPQwh88rBQq+RxQJSGlFKUaBVNBgFoFkdArcTwWFev6nV9lChoBmgJaA9DCKeSAaDKA3FAlIaUUpRoFUv0aBZHQK3FIr8R+Sd1fZQoaAZoCWgPQwi9/bloSAplQJSGlFKUaBVN6ANoFkdArcUo1cdHUnV9lChoBmgJaA9DCOT09XxNT3NAlIaUUpRoFU0CAWgWR0CtxTa6BiCrdX2UKGgGaAloD0MIueF30620cUCUhpRSlGgVS89oFkdArcVhMQEpzHV9lChoBmgJaA9DCKExk6iXNHFAlIaUUpRoFUvgaBZHQK3FugTyrgh1fZQoaAZoCWgPQwhinpW0okBzQJSGlFKUaBVL+2gWR0CtxclMqSX/dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1364, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2-long.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbeee0a1612fda2ffea07f309439770fcf49d2a944a233e318c30085c34ed4bd
3
+ size 147434
ppo-LunarLander-v2-long/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2-long/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8a352ddaf0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8a352ddb80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8a352ddc10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8a352ddca0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8a352ddd30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8a352dddc0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8a352dde50>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8a352ddee0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8a352ddf70>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8a352e3040>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8a352e30d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8a352e3160>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f8a352e17c0>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 5600000,
47
+ "_total_timesteps": 55000000.0,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1679351599075590843,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2k/L0tAhk/CLeEPfCG/b6hFJK9bj54PQAAAAAAAAAAZgCLvFyLQbpV7ly9S2tYMlASPLuOvAG0AACAPwAAgD8g1CM+7667Pp7Mpr7eUIS+NLVXPDaj9r0AAAAAAAAAAPO+sz0UNoa66pqMNTPlN69YpCG7QOmttAAAgD8AAIA/M8v/u3d/ST8ad9W7NaQQv9/gZ70anYa7AAAAAAAAAAAALzm9hXOAuRMQ0Dma9EI0uYSRO5509LgAAIA/AACAP6YBqb3SLdK7NTxqvuLBSb4N2zs916kuPwAAgD8AAIA/zYpQvHvOibr65iuzhcGqr1CQfzqIp88zAACAPwAAgD+aYe27SMuIuq7GgrtyL4w8ix1mu5M7dD0AAIA/AACAP8AyDb51n9Q+WQYVPsCF+74oacC89QPBPQAAAAAAAAAAjfDSvSkkcbparZy7NNWxNknx/rpKn6w6AAAAAAAAAADaotI9/091P7I4RT6M9Rq/snHOPUAeWD0AAAAAAAAAADN33rt7mqi6L1pGNJUQJK6GoKC6tuiPswAAgD8AAIA/5soRvfm+zT4iTyI+S9zzvtwOjD2wbVM9AAAAAAAAAACm9eM9g9MBPxAD1T33lwa/QHPOPShwWz0AAAAAAAAAAIBBHj0K10638BfSNGFBAzBCK1m6A5kJtAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": 0.8984192,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVKhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXoWUn9Q2c0CUhpRSlIwBbJRLtYwBdJRHQK2u8xRl6JJ1fZQoaAZoCWgPQwjHYwYqY8BwQJSGlFKUaBVLuWgWR0CtrxoSteUqdX2UKGgGaAloD0MIar3faEcOcECUhpRSlGgVS9hoFkdAra8geV9nb3V9lChoBmgJaA9DCJSHhVqT+HJAlIaUUpRoFUvsaBZHQK2vR/io86p1fZQoaAZoCWgPQwjVPEfkeyJzQJSGlFKUaBVLvmgWR0Ctr2ZWBBiTdX2UKGgGaAloD0MIwCMqVHftc0CUhpRSlGgVS9loFkdAra9xPykKu3V9lChoBmgJaA9DCLFs5pBUnW9AlIaUUpRoFUvoaBZHQK2v9ZVXFLp1fZQoaAZoCWgPQwg8E5okFtFzQJSGlFKUaBVNLQFoFkdArbAxWzWwvHV9lChoBmgJaA9DCDSeCOL8MnRAlIaUUpRoFUvdaBZHQK2wZJeVs1t1fZQoaAZoCWgPQwhpkIKn0IdyQJSGlFKUaBVLzWgWR0CtsJM8gZCOdX2UKGgGaAloD0MIGxNiLqlUcECUhpRSlGgVS9RoFkdArbDPdsSCe3V9lChoBmgJaA9DCJc7M8FwgHBAlIaUUpRoFUvWaBZHQK2xC28Zk091fZQoaAZoCWgPQwj8VBUaCKVyQJSGlFKUaBVLvmgWR0CtsRfn4fwJdX2UKGgGaAloD0MIOs0C7Y5Mb0CUhpRSlGgVS95oFkdArbEsMuvll3V9lChoBmgJaA9DCNHno4z4OXFAlIaUUpRoFUvJaBZHQK2xPXOGCZp1fZQoaAZoCWgPQwjey31yFMBwQJSGlFKUaBVL3GgWR0CtsT+qJdjYdX2UKGgGaAloD0MI9iNFZFhlckCUhpRSlGgVS8VoFkdArbFe+Eh7mnV9lChoBmgJaA9DCKmkTkAT5HBAlIaUUpRoFU0QAWgWR0CtsW3xe9i+dX2UKGgGaAloD0MIJqyNsRMjc0CUhpRSlGgVTQcBaBZHQK2xoDZlFtt1fZQoaAZoCWgPQwjtSstIfZVzQJSGlFKUaBVL2WgWR0CtsbIr4FibdX2UKGgGaAloD0MIwO0JEttLcUCUhpRSlGgVS+BoFkdArbHNVYISlHV9lChoBmgJaA9DCB767laWynJAlIaUUpRoFUuzaBZHQK2yEUD+zdF1fZQoaAZoCWgPQwi95erHJl5vQJSGlFKUaBVL0GgWR0CtsiBo/RmcdX2UKGgGaAloD0MIe2r11ZU3cUCUhpRSlGgVS75oFkdArbJYku6ErXV9lChoBmgJaA9DCItQbAUNxnFAlIaUUpRoFUvPaBZHQK2yrcoH9m91fZQoaAZoCWgPQwjgL2ZL1uhvQJSGlFKUaBVLumgWR0CtsyJbdJrddX2UKGgGaAloD0MIUwPN59w8cECUhpRSlGgVS8loFkdArbMoaUA1enV9lChoBmgJaA9DCL2mBwWlWnFAlIaUUpRoFUvcaBZHQK2zVLnLaEl1fZQoaAZoCWgPQwiughjo2sNxQJSGlFKUaBVLxGgWR0Cts2iAc1fmdX2UKGgGaAloD0MIwY7/AsFecECUhpRSlGgVS95oFkdArbN9UMoc73V9lChoBmgJaA9DCDCA8KFELXBAlIaUUpRoFUvLaBZHQK2zjpnHvMN1fZQoaAZoCWgPQwgZ5ZmXw7pyQJSGlFKUaBVNCQFoFkdArbOisCDEnHV9lChoBmgJaA9DCIxJfy8FNm5AlIaUUpRoFUvkaBZHQK2zoa/h2nt1fZQoaAZoCWgPQwiuvOR/8hlvQJSGlFKUaBVL1GgWR0Cts9hzeXRgdX2UKGgGaAloD0MI3st9cpQ8ckCUhpRSlGgVS89oFkdArbP6jrRjSXV9lChoBmgJaA9DCFJGXABamHFAlIaUUpRoFUvlaBZHQK20FWf9P1t1fZQoaAZoCWgPQwhSLLe0GhRxQJSGlFKUaBVL0WgWR0CttFqwIMScdX2UKGgGaAloD0MIKsWOxiEfckCUhpRSlGgVS+VoFkdArbR9+RYA83V9lChoBmgJaA9DCLt7gO5LsnBAlIaUUpRoFUvbaBZHQK20sQAdXDF1fZQoaAZoCWgPQwiZS6q2mxtlQJSGlFKUaBVN6ANoFkdArbT5ylvZRXV9lChoBmgJaA9DCB41JsSc+nFAlIaUUpRoFUvvaBZHQK21PXGwRoR1fZQoaAZoCWgPQwi2gNB6+FdyQJSGlFKUaBVL2mgWR0CttWQXhwVCdX2UKGgGaAloD0MIrS8S2jKicECUhpRSlGgVS71oFkdArbVmMqBmPHV9lChoBmgJaA9DCHKkMzBynW9AlIaUUpRoFUvYaBZHQK21mWAwwkB1fZQoaAZoCWgPQwjMeca+ZC1zQJSGlFKUaBVL6WgWR0CttbTtCzC2dX2UKGgGaAloD0MI6uqOxbZKb0CUhpRSlGgVS95oFkdArbXMrkKeCnV9lChoBmgJaA9DCI/Ey9O5KHFAlIaUUpRoFUvaaBZHQK211LwnYxt1fZQoaAZoCWgPQwijBz4GK+pyQJSGlFKUaBVLzWgWR0CttejTKDChdX2UKGgGaAloD0MIPiKmRNJ9cUCUhpRSlGgVS8xoFkdArbYFgUlAvHV9lChoBmgJaA9DCE8IHXQJsHFAlIaUUpRoFU0FAWgWR0CtvBzGPxQSdX2UKGgGaAloD0MI3eo56b2eckCUhpRSlGgVS8JoFkdArbwzb349HXV9lChoBmgJaA9DCC6sG+/OpHJAlIaUUpRoFUvraBZHQK28aDoQnQZ1fZQoaAZoCWgPQwhi83FtaKZzQJSGlFKUaBVL6mgWR0CtvQDXWe6JdX2UKGgGaAloD0MIrDqrBXasc0CUhpRSlGgVS+JoFkdArb01r9ETg3V9lChoBmgJaA9DCFQcB16t+nJAlIaUUpRoFUu0aBZHQK29miQDFId1fZQoaAZoCWgPQwiCqtGrQc5wQJSGlFKUaBVL+WgWR0Ctvg2a2F37dX2UKGgGaAloD0MIowG8BVIndECUhpRSlGgVS+BoFkdArb4S8tf5UXV9lChoBmgJaA9DCBA9KZPaxnJAlIaUUpRoFUvfaBZHQK2+UZ7Xxvx1fZQoaAZoCWgPQwjzBMJO8QN0QJSGlFKUaBVLx2gWR0CtvnGtp22YdX2UKGgGaAloD0MIOdOE7WcBcECUhpRSlGgVS9NoFkdArb523azu4XV9lChoBmgJaA9DCMk9Xd0xTHFAlIaUUpRoFUvLaBZHQK2+rDFZPmB1fZQoaAZoCWgPQwh48umxLUVxQJSGlFKUaBVL12gWR0CtvsqPXCj2dX2UKGgGaAloD0MI8uuH2KA0cUCUhpRSlGgVS8NoFkdArb7ZYFJQL3V9lChoBmgJaA9DCNNocjGG+HFAlIaUUpRoFUusaBZHQK2+1rfLs8h1fZQoaAZoCWgPQwgW26Si8fFyQJSGlFKUaBVLvGgWR0Ctvx8biqACdX2UKGgGaAloD0MIMPFHUSeKc0CUhpRSlGgVS7ZoFkdArb87awljVnV9lChoBmgJaA9DCGPwMO2b7m1AlIaUUpRoFU0AAWgWR0Ctv4BG6PKddX2UKGgGaAloD0MI+kUJ+sv7cUCUhpRSlGgVS7loFkdArb/88La24XV9lChoBmgJaA9DCNuK/WW3YHFAlIaUUpRoFUvPaBZHQK3AIO938oB1fZQoaAZoCWgPQwjNAYI5+ptwQJSGlFKUaBVLwWgWR0CtwHYx1xKhdX2UKGgGaAloD0MIRidLrXelcECUhpRSlGgVS8doFkdArcDuKKpDNXV9lChoBmgJaA9DCJm8AWb+GXFAlIaUUpRoFUvcaBZHQK3BKQyylep1fZQoaAZoCWgPQwhmFMstLZ5vQJSGlFKUaBVL1WgWR0CtwYLMs6JZdX2UKGgGaAloD0MIXMZNDfT6ckCUhpRSlGgVTQABaBZHQK3BwHRCx/x1fZQoaAZoCWgPQwgnTu53KDdzQJSGlFKUaBVL+2gWR0CtwcjAi3XqdX2UKGgGaAloD0MIE0n0MgqhcUCUhpRSlGgVS+VoFkdArcHa0tyxRnV9lChoBmgJaA9DCKg0YmbfmnFAlIaUUpRoFUvmaBZHQK3B24VARkF1fZQoaAZoCWgPQwhDVUyln45xQJSGlFKUaBVL+GgWR0CtwgT4cm0FdX2UKGgGaAloD0MIsYf2sYJkb0CUhpRSlGgVTQ4BaBZHQK3CAvL5h0B1fZQoaAZoCWgPQwiQoPgxJm1xQJSGlFKUaBVLvWgWR0Ctwk48uBczdX2UKGgGaAloD0MIMo6R7JHBcUCUhpRSlGgVTQIBaBZHQK3CX7k4m1J1fZQoaAZoCWgPQwjajxSRYedxQJSGlFKUaBVL7GgWR0Ctwm9bPhQ4dX2UKGgGaAloD0MIBOJ1/QIhb0CUhpRSlGgVS9xoFkdArcMAy2x6fXV9lChoBmgJaA9DCAPS/geYVHJAlIaUUpRoFUv3aBZHQK3DD1V5rxl1fZQoaAZoCWgPQwhwzR39r2RvQJSGlFKUaBVL0WgWR0Ctwz1gx8D0dX2UKGgGaAloD0MIMdEgBc86cUCUhpRSlGgVS+JoFkdArcOze/Ho5nV9lChoBmgJaA9DCMsTCDtFpW5AlIaUUpRoFUu9aBZHQK3D9tvXK8t1fZQoaAZoCWgPQwgTJ/c7FA9wQJSGlFKUaBVLx2gWR0Ctw/sdDIBBdX2UKGgGaAloD0MIOX8TCpH1bkCUhpRSlGgVS95oFkdArcQEqpcX33V9lChoBmgJaA9DCAw7jEn/THJAlIaUUpRoFUvGaBZHQK3EEhpQDV91fZQoaAZoCWgPQwi2gTtQJwtxQJSGlFKUaBVLzWgWR0CtxBSVGCqZdX2UKGgGaAloD0MINLkYA+tybkCUhpRSlGgVS8VoFkdArcQ1F+d9UnV9lChoBmgJaA9DCH80nDK3bXJAlIaUUpRoFUuuaBZHQK3EZe54GEB1fZQoaAZoCWgPQwh88rBQq+RxQJSGlFKUaBVNBgFoFkdArcTwWFev6nV9lChoBmgJaA9DCKeSAaDKA3FAlIaUUpRoFUv0aBZHQK3FIr8R+Sd1fZQoaAZoCWgPQwi9/bloSAplQJSGlFKUaBVN6ANoFkdArcUo1cdHUnV9lChoBmgJaA9DCOT09XxNT3NAlIaUUpRoFU0CAWgWR0CtxTa6BiCrdX2UKGgGaAloD0MIueF30620cUCUhpRSlGgVS89oFkdArcVhMQEpzHV9lChoBmgJaA9DCKExk6iXNHFAlIaUUpRoFUvgaBZHQK3FugTyrgh1fZQoaAZoCWgPQwhinpW0okBzQJSGlFKUaBVL+2gWR0CtxclMqSX/dWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 1364,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 128,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2-long/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dee971e63d90a72e22c45174a3952fb7a5c5751479a7bbd161f39b98c31bb1c
3
+ size 88057
ppo-LunarLander-v2-long/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44e72719df8db6d0405215ce1e7396a57740443dfd103247f7c5586f292bf06a
3
+ size 43393
ppo-LunarLander-v2-long/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-long/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 256.9618590576713, "std_reward": 24.623149723685174, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-12T12:53:29.909990"}
 
1
+ {"mean_reward": 265.9585265929665, "std_reward": 18.283034796723225, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-24T23:57:46.080603"}