versae commited on
Commit
3af58b3
1 Parent(s): b36334c

Adding eval script

Browse files
Files changed (1) hide show
  1. eval.py +206 -0
eval.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import argparse
3
+ import re
4
+ from typing import Dict
5
+
6
+ import torch
7
+ from datasets import Audio, Dataset, load_dataset, load_metric
8
+ from num2words import num2words as n2w
9
+
10
+ from transformers import AutoFeatureExtractor, AutoModelForCTC, pipeline, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM, Wav2Vec2FeatureExtractor
11
+ # from pyctcdecode import BeamSearchDecoderCTC
12
+
13
+
14
+ def log_results(result: Dataset, args: Dict[str, str]):
15
+ """DO NOT CHANGE. This function computes and logs the result metrics."""
16
+
17
+ log_outputs = args.log_outputs
18
+ lm = "withLM" if args.use_lm else "noLM"
19
+ model_id = args.model_id.replace("/", "_").replace(".", "")
20
+ dataset_id = "_".join([model_id] + args.dataset.split("/") + [args.config, args.split, lm])
21
+
22
+ # load metric
23
+ wer = load_metric("wer")
24
+ cer = load_metric("cer")
25
+
26
+ # compute metrics
27
+ wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
28
+ cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
29
+
30
+ # print & log results
31
+ result_str = f"{dataset_id}\nWER: {wer_result}\nCER: {cer_result}"
32
+ print(result_str)
33
+
34
+ with open(f"{dataset_id}_eval_results.txt", "w") as f:
35
+ f.write(result_str)
36
+
37
+ # log all results in text file. Possibly interesting for analysis
38
+ if log_outputs is not None:
39
+ pred_file = f"log_{dataset_id}_predictions.txt"
40
+ target_file = f"log_{dataset_id}_targets.txt"
41
+
42
+ with open(pred_file, "w") as p, open(target_file, "w") as t:
43
+ # mapping function to write output
44
+ def write_to_file(batch, i):
45
+ p.write(f"{i}" + "\n")
46
+ p.write(batch["prediction"] + "\n")
47
+ t.write(f"{i}" + "\n")
48
+ t.write(batch["target"] + "\n")
49
+
50
+ result.map(write_to_file, with_indices=True)
51
+
52
+
53
+ def normalize_text(text: str, dataset: str) -> str:
54
+ """DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
55
+
56
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\–\_\\\+\#\/]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
57
+ text = re.sub(chars_to_ignore_regex, "", text.lower()) + " "
58
+
59
+ if dataset.lower().endswith("nst"):
60
+ text = text.lower()
61
+ text = text.replace("(...vær stille under dette opptaket...)", "")
62
+ text = re.sub('[áàâ]', 'a', text)
63
+ text = re.sub('[ä]', 'æ', text)
64
+ text = re.sub('[éèëê]', 'e', text)
65
+ text = re.sub('[íìïî]', 'i', text)
66
+ text = re.sub('[óòöô]', 'o', text)
67
+ text = re.sub('[ö]', 'ø', text)
68
+ text = re.sub('[ç]', 'c', text)
69
+ text = re.sub('[úùüû]', 'u', text)
70
+ # text = re.sub('\\(?=(Punktum|Komma|Utropstegn|Spørsmålstegn))', ' ', text)
71
+ text = re.sub('\s+', ' ', text)
72
+ elif dataset.lower().endswith("npsc"):
73
+ text = re.sub('[áàâ]', 'a', text)
74
+ text = re.sub('[ä]', 'æ', text)
75
+ text = re.sub('[éèëê]', 'e', text)
76
+ text = re.sub('[íìïî]', 'i', text)
77
+ text = re.sub('[óòöô]', 'o', text)
78
+ text = re.sub('[ö]', 'ø', text)
79
+ text = re.sub('[ç]', 'c', text)
80
+ text = re.sub('[úùüû]', 'u', text)
81
+ text = re.sub('\s+', ' ', text)
82
+ elif dataset.lower().endswith("fleurs"):
83
+ text = re.sub('[áàâ]', 'a', text)
84
+ text = re.sub('[ä]', 'æ', text)
85
+ text = re.sub('[éèëê]', 'e', text)
86
+ text = re.sub('[íìïî]', 'i', text)
87
+ text = re.sub('[óòöô]', 'o', text)
88
+ text = re.sub('[ö]', 'ø', text)
89
+ text = re.sub('[ç]', 'c', text)
90
+ text = re.sub('[úùüû]', 'u', text)
91
+ text = re.compile(r"-?[1-9][\d.]*").sub(lambda x: n2w(x.group(0), lang="no"), text)
92
+ text = re.sub('\s+', ' ', text)
93
+ text = re.sub("<ee(eh)?>", "e", text)
94
+ text = re.sub("<mmm?>", "m", text)
95
+ text = re.sub("<qq>", "q", text)
96
+ text = re.sub("<inaudible>", "i", text)
97
+
98
+ # # In addition, we can normalize the target text, e.g. removing new lines characters etc...
99
+ # # note that order is important here!
100
+ # token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
101
+
102
+ # for t in token_sequences_to_ignore:
103
+ # text = " ".join(text.split(t))
104
+
105
+ return text
106
+
107
+
108
+ def main(args):
109
+ # load dataset
110
+ dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
111
+
112
+ # for testing: only process the first two examples as a test
113
+ # dataset = dataset.select(range(10))
114
+
115
+ # load processor
116
+ feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
117
+ sampling_rate = feature_extractor.sampling_rate
118
+
119
+ # resample audio
120
+ dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
121
+
122
+ # load eval pipeline
123
+ if args.device is None:
124
+ args.device = 0 if torch.cuda.is_available() else -1
125
+ # asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
126
+
127
+ model_instance = AutoModelForCTC.from_pretrained(args.model_id)
128
+ if args.use_lm:
129
+ processor = Wav2Vec2ProcessorWithLM.from_pretrained(args.model_id)
130
+ decoder = processor.decoder
131
+ else:
132
+ processor = Wav2Vec2Processor.from_pretrained(args.model_id)
133
+ decoder = None
134
+ asr = pipeline(
135
+ "automatic-speech-recognition",
136
+ model=model_instance,
137
+ tokenizer=processor.tokenizer,
138
+ feature_extractor=processor.feature_extractor,
139
+ decoder=decoder,
140
+ device=args.device
141
+ )
142
+
143
+ # feature_extractor_dict, _ = Wav2Vec2FeatureExtractor.get_feature_extractor_dict(args.model_id)
144
+ # feature_extractor_dict["processor_class"] = "Wav2Vec2Processor" if not args.use_lm else "Wav2Vec2ProcessorWithLM"
145
+ # feature_extractor = Wav2Vec2FeatureExtractor.from_dict(feature_extractor_dict)
146
+
147
+ # asr = pipeline("automatic-speech-recognition", model=args.model_id, feature_extractor=feature_extractor, device=args.device, decoder=BeamSearchDecoderCTC.load_from_dir("./"))
148
+
149
+ # map function to decode audio
150
+ def map_to_pred(batch):
151
+ prediction = asr(
152
+ batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
153
+ )
154
+
155
+ batch["prediction"] = prediction[args.text_column]
156
+ batch["target"] = normalize_text(args.text_column, args.dataset)
157
+ return batch
158
+
159
+ # run inference on all examples
160
+ result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
161
+
162
+ # compute and log_results
163
+ # do not change function below
164
+ log_results(result, args)
165
+
166
+
167
+ if __name__ == "__main__":
168
+ parser = argparse.ArgumentParser()
169
+
170
+ parser.add_argument(
171
+ "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
172
+ )
173
+ parser.add_argument(
174
+ "--dataset",
175
+ type=str,
176
+ required=True,
177
+ help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
178
+ )
179
+ parser.add_argument(
180
+ "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
181
+ )
182
+ parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
183
+ parser.add_argument(
184
+ "--text_column", type=str, default="text", help="Column name containing the transcription."
185
+ )
186
+ parser.add_argument(
187
+ "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
188
+ )
189
+ parser.add_argument(
190
+ "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
191
+ )
192
+ parser.add_argument(
193
+ "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
194
+ )
195
+ parser.add_argument(
196
+ "--device",
197
+ type=int,
198
+ default=None,
199
+ help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
200
+ )
201
+ parser.add_argument(
202
+ "--use_lm", action="store_true", help="If defined, use included language model as the decoder."
203
+ )
204
+ args = parser.parse_args()
205
+
206
+ main(args)