Add 5-gram lang model and eval code
Browse files- .gitattributes +1 -0
- add_kenlm.py +37 -0
- added_tokens.json +4 -1
- alphabet.json +1 -0
- eval.py +206 -0
- language_model/5gram.bin +3 -0
- language_model/attrs.json +1 -0
- language_model/unigrams.txt +3 -0
- preprocessor_config.json +1 -0
- special_tokens_map.json +64 -1
- tokenizer_config.json +13 -1
- vocab.json +41 -1
.gitattributes
CHANGED
@@ -37,3 +37,4 @@ wandb/run-20220919_091309-2lk1vb0u/logs/debug-internal.log filter=lfs diff=lfs m
|
|
37 |
wandb/run-20220919_091309-2lk1vb0u/files/output.log filter=lfs diff=lfs merge=lfs -text
|
38 |
wandb/run-20221025_092127-29xi74uq/logs/debug-internal.log filter=lfs diff=lfs merge=lfs -text
|
39 |
wandb/run-20221025_092127-29xi74uq/files/output.log filter=lfs diff=lfs merge=lfs -text
|
|
|
|
37 |
wandb/run-20220919_091309-2lk1vb0u/files/output.log filter=lfs diff=lfs merge=lfs -text
|
38 |
wandb/run-20221025_092127-29xi74uq/logs/debug-internal.log filter=lfs diff=lfs merge=lfs -text
|
39 |
wandb/run-20221025_092127-29xi74uq/files/output.log filter=lfs diff=lfs merge=lfs -text
|
40 |
+
language_model/unigrams.txt filter=lfs diff=lfs merge=lfs -text
|
add_kenlm.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from transformers import AutoProcessor
|
3 |
+
from transformers import Wav2Vec2ProcessorWithLM
|
4 |
+
from pyctcdecode import build_ctcdecoder
|
5 |
+
|
6 |
+
|
7 |
+
def main(args):
|
8 |
+
processor = AutoProcessor.from_pretrained(args.model_name_or_path)
|
9 |
+
vocab_dict = processor.tokenizer.get_vocab()
|
10 |
+
sorted_vocab_dict = {
|
11 |
+
k.lower(): v for k, v in sorted(vocab_dict.items(), key=lambda item: item[1])
|
12 |
+
}
|
13 |
+
decoder = build_ctcdecoder(
|
14 |
+
labels=list(sorted_vocab_dict.keys()),
|
15 |
+
kenlm_model_path=args.kenlm_model_path,
|
16 |
+
)
|
17 |
+
processor_with_lm = Wav2Vec2ProcessorWithLM(
|
18 |
+
feature_extractor=processor.feature_extractor,
|
19 |
+
tokenizer=processor.tokenizer,
|
20 |
+
decoder=decoder,
|
21 |
+
)
|
22 |
+
processor_with_lm.save_pretrained(args.model_name_or_path)
|
23 |
+
print(
|
24 |
+
f"Run: ~/bin/build_binary language_model/*.arpa language_model/5gram.bin -T $(pwd) && rm language_model/*.arpa")
|
25 |
+
|
26 |
+
|
27 |
+
def parse_args():
|
28 |
+
parser = argparse.ArgumentParser()
|
29 |
+
parser.add_argument('--model_name_or_path', default="./", help='Model name or path. Defaults to ./')
|
30 |
+
parser.add_argument('--kenlm_model_path', required=True, help='Path to KenLM arpa file.')
|
31 |
+
args = parser.parse_args()
|
32 |
+
return args
|
33 |
+
|
34 |
+
|
35 |
+
if __name__ == "__main__":
|
36 |
+
main(parse_args())
|
37 |
+
|
added_tokens.json
CHANGED
@@ -1 +1,4 @@
|
|
1 |
-
{
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</s>": 40,
|
3 |
+
"<s>": 39
|
4 |
+
}
|
alphabet.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"labels": [" ", "(", ")", "0", "3", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "\u00e5", "\u00e6", "\u00f8", "\u2047", "", "<s>", "</s>"], "is_bpe": false}
|
eval.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import argparse
|
3 |
+
import re
|
4 |
+
from typing import Dict
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from datasets import Audio, Dataset, load_dataset, load_metric
|
8 |
+
from num2words import num2words as n2w
|
9 |
+
|
10 |
+
from transformers import AutoFeatureExtractor, AutoModelForCTC, pipeline, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM, Wav2Vec2FeatureExtractor
|
11 |
+
# from pyctcdecode import BeamSearchDecoderCTC
|
12 |
+
|
13 |
+
|
14 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
15 |
+
"""DO NOT CHANGE. This function computes and logs the result metrics."""
|
16 |
+
|
17 |
+
log_outputs = args.log_outputs
|
18 |
+
lm = "withLM" if args.use_lm else "noLM"
|
19 |
+
model_id = args.model_id.replace("/", "_").replace(".", "")
|
20 |
+
dataset_id = "_".join([model_id] + args.dataset.split("/") + [args.config, args.split, lm])
|
21 |
+
|
22 |
+
# load metric
|
23 |
+
wer = load_metric("wer")
|
24 |
+
cer = load_metric("cer")
|
25 |
+
|
26 |
+
# compute metrics
|
27 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
28 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
29 |
+
|
30 |
+
# print & log results
|
31 |
+
result_str = f"{dataset_id}\nWER: {wer_result}\nCER: {cer_result}"
|
32 |
+
print(result_str)
|
33 |
+
|
34 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
35 |
+
f.write(result_str)
|
36 |
+
|
37 |
+
# log all results in text file. Possibly interesting for analysis
|
38 |
+
if log_outputs is not None:
|
39 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
40 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
41 |
+
|
42 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
43 |
+
# mapping function to write output
|
44 |
+
def write_to_file(batch, i):
|
45 |
+
p.write(f"{i}" + "\n")
|
46 |
+
p.write(batch["prediction"] + "\n")
|
47 |
+
t.write(f"{i}" + "\n")
|
48 |
+
t.write(batch["target"] + "\n")
|
49 |
+
|
50 |
+
result.map(write_to_file, with_indices=True)
|
51 |
+
|
52 |
+
|
53 |
+
def normalize_text(text: str, dataset: str) -> str:
|
54 |
+
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
55 |
+
|
56 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\–\_\\\+\#\/]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
57 |
+
text = re.sub(chars_to_ignore_regex, "", text.lower()) + " "
|
58 |
+
|
59 |
+
if dataset.lower().endswith("nst"):
|
60 |
+
text = text.lower()
|
61 |
+
text = text.replace("(...vær stille under dette opptaket...)", "")
|
62 |
+
text = re.sub('[áàâ]', 'a', text)
|
63 |
+
text = re.sub('[ä]', 'æ', text)
|
64 |
+
text = re.sub('[éèëê]', 'e', text)
|
65 |
+
text = re.sub('[íìïî]', 'i', text)
|
66 |
+
text = re.sub('[óòöô]', 'o', text)
|
67 |
+
text = re.sub('[ö]', 'ø', text)
|
68 |
+
text = re.sub('[ç]', 'c', text)
|
69 |
+
text = re.sub('[úùüû]', 'u', text)
|
70 |
+
# text = re.sub('\\(?=(Punktum|Komma|Utropstegn|Spørsmålstegn))', ' ', text)
|
71 |
+
text = re.sub('\s+', ' ', text)
|
72 |
+
elif dataset.lower().endswith("npsc"):
|
73 |
+
text = re.sub('[áàâ]', 'a', text)
|
74 |
+
text = re.sub('[ä]', 'æ', text)
|
75 |
+
text = re.sub('[éèëê]', 'e', text)
|
76 |
+
text = re.sub('[íìïî]', 'i', text)
|
77 |
+
text = re.sub('[óòöô]', 'o', text)
|
78 |
+
text = re.sub('[ö]', 'ø', text)
|
79 |
+
text = re.sub('[ç]', 'c', text)
|
80 |
+
text = re.sub('[úùüû]', 'u', text)
|
81 |
+
text = re.sub('\s+', ' ', text)
|
82 |
+
elif dataset.lower().endswith("fleurs"):
|
83 |
+
text = re.sub('[áàâ]', 'a', text)
|
84 |
+
text = re.sub('[ä]', 'æ', text)
|
85 |
+
text = re.sub('[éèëê]', 'e', text)
|
86 |
+
text = re.sub('[íìïî]', 'i', text)
|
87 |
+
text = re.sub('[óòöô]', 'o', text)
|
88 |
+
text = re.sub('[ö]', 'ø', text)
|
89 |
+
text = re.sub('[ç]', 'c', text)
|
90 |
+
text = re.sub('[úùüû]', 'u', text)
|
91 |
+
text = re.compile(r"-?[1-9][\d.]*").sub(lambda x: n2w(x.group(0), lang="no"), text)
|
92 |
+
text = re.sub('\s+', ' ', text)
|
93 |
+
text = re.sub('<ee>', 'eee', text)
|
94 |
+
text = re.sub('<qq>', 'qqq', text)
|
95 |
+
text = re.sub('<mm>', 'mmm', text)
|
96 |
+
text = re.sub('<inaudible>', 'xxx', text)
|
97 |
+
|
98 |
+
# # In addition, we can normalize the target text, e.g. removing new lines characters etc...
|
99 |
+
# # note that order is important here!
|
100 |
+
# token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
|
101 |
+
|
102 |
+
# for t in token_sequences_to_ignore:
|
103 |
+
# text = " ".join(text.split(t))
|
104 |
+
|
105 |
+
return text
|
106 |
+
|
107 |
+
|
108 |
+
def main(args):
|
109 |
+
# load dataset
|
110 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
111 |
+
|
112 |
+
# for testing: only process the first two examples as a test
|
113 |
+
# dataset = dataset.select(range(10))
|
114 |
+
|
115 |
+
# load processor
|
116 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
117 |
+
sampling_rate = feature_extractor.sampling_rate
|
118 |
+
|
119 |
+
# resample audio
|
120 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
121 |
+
|
122 |
+
# load eval pipeline
|
123 |
+
if args.device is None:
|
124 |
+
args.device = 0 if torch.cuda.is_available() else -1
|
125 |
+
# asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
|
126 |
+
|
127 |
+
model_instance = AutoModelForCTC.from_pretrained(args.model_id)
|
128 |
+
if args.use_lm:
|
129 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(args.model_id)
|
130 |
+
decoder = processor.decoder
|
131 |
+
else:
|
132 |
+
processor = Wav2Vec2Processor.from_pretrained(args.model_id)
|
133 |
+
decoder = None
|
134 |
+
asr = pipeline(
|
135 |
+
"automatic-speech-recognition",
|
136 |
+
model=model_instance,
|
137 |
+
tokenizer=processor.tokenizer,
|
138 |
+
feature_extractor=processor.feature_extractor,
|
139 |
+
decoder=decoder,
|
140 |
+
device=args.device
|
141 |
+
)
|
142 |
+
|
143 |
+
# feature_extractor_dict, _ = Wav2Vec2FeatureExtractor.get_feature_extractor_dict(args.model_id)
|
144 |
+
# feature_extractor_dict["processor_class"] = "Wav2Vec2Processor" if not args.use_lm else "Wav2Vec2ProcessorWithLM"
|
145 |
+
# feature_extractor = Wav2Vec2FeatureExtractor.from_dict(feature_extractor_dict)
|
146 |
+
|
147 |
+
# asr = pipeline("automatic-speech-recognition", model=args.model_id, feature_extractor=feature_extractor, device=args.device, decoder=BeamSearchDecoderCTC.load_from_dir("./"))
|
148 |
+
|
149 |
+
# map function to decode audio
|
150 |
+
def map_to_pred(batch):
|
151 |
+
prediction = asr(
|
152 |
+
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
|
153 |
+
)
|
154 |
+
|
155 |
+
batch["prediction"] = prediction["text"]
|
156 |
+
batch["target"] = normalize_text(batch[args.text_column], args.dataset)
|
157 |
+
return batch
|
158 |
+
|
159 |
+
# run inference on all examples
|
160 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
161 |
+
|
162 |
+
# compute and log_results
|
163 |
+
# do not change function below
|
164 |
+
log_results(result, args)
|
165 |
+
|
166 |
+
|
167 |
+
if __name__ == "__main__":
|
168 |
+
parser = argparse.ArgumentParser()
|
169 |
+
|
170 |
+
parser.add_argument(
|
171 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
172 |
+
)
|
173 |
+
parser.add_argument(
|
174 |
+
"--dataset",
|
175 |
+
type=str,
|
176 |
+
required=True,
|
177 |
+
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
|
178 |
+
)
|
179 |
+
parser.add_argument(
|
180 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
181 |
+
)
|
182 |
+
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
|
183 |
+
parser.add_argument(
|
184 |
+
"--text_column", type=str, default="text", help="Column name containing the transcription."
|
185 |
+
)
|
186 |
+
parser.add_argument(
|
187 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
|
188 |
+
)
|
189 |
+
parser.add_argument(
|
190 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
|
191 |
+
)
|
192 |
+
parser.add_argument(
|
193 |
+
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
|
194 |
+
)
|
195 |
+
parser.add_argument(
|
196 |
+
"--device",
|
197 |
+
type=int,
|
198 |
+
default=None,
|
199 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
200 |
+
)
|
201 |
+
parser.add_argument(
|
202 |
+
"--use_lm", action="store_true", help="If defined, use included language model as the decoder."
|
203 |
+
)
|
204 |
+
args = parser.parse_args()
|
205 |
+
|
206 |
+
main(args)
|
language_model/5gram.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b41c24c63f2f0585bea83666369593f3b3e6d047f327a90f36ebca2c35ef0ff
|
3 |
+
size 4243671427
|
language_model/attrs.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"alpha": 0.5, "beta": 1.5, "unk_score_offset": -10.0, "score_boundary": true}
|
language_model/unigrams.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac3e71ca49838ca355df6fdcb8d89344a5a9bf9e1a76587cdf5df1367c19b9a9
|
3 |
+
size 16759269
|
preprocessor_config.json
CHANGED
@@ -4,6 +4,7 @@
|
|
4 |
"feature_size": 1,
|
5 |
"padding_side": "right",
|
6 |
"padding_value": 0,
|
|
|
7 |
"return_attention_mask": true,
|
8 |
"sampling_rate": 16000
|
9 |
}
|
|
|
4 |
"feature_size": 1,
|
5 |
"padding_side": "right",
|
6 |
"padding_value": 0,
|
7 |
+
"processor_class": "Wav2Vec2ProcessorWithLM",
|
8 |
"return_attention_mask": true,
|
9 |
"sampling_rate": 16000
|
10 |
}
|
special_tokens_map.json
CHANGED
@@ -1 +1,64 @@
|
|
1 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": true,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"content": "</s>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": true,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"content": "<s>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"content": "</s>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": true,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"content": "<s>",
|
33 |
+
"lstrip": false,
|
34 |
+
"normalized": true,
|
35 |
+
"rstrip": false,
|
36 |
+
"single_word": false
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"content": "</s>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": true,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"content": "<s>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": true,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"content": "</s>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": true,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false
|
58 |
+
}
|
59 |
+
],
|
60 |
+
"bos_token": "<s>",
|
61 |
+
"eos_token": "</s>",
|
62 |
+
"pad_token": "[PAD]",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
tokenizer_config.json
CHANGED
@@ -1 +1,13 @@
|
|
1 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"do_lower_case": false,
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"name_or_path": "./",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"processor_class": "Wav2Vec2ProcessorWithLM",
|
8 |
+
"replace_word_delimiter_char": " ",
|
9 |
+
"special_tokens_map_file": null,
|
10 |
+
"tokenizer_class": "Wav2Vec2CTCTokenizer",
|
11 |
+
"unk_token": "[UNK]",
|
12 |
+
"word_delimiter_token": "|"
|
13 |
+
}
|
vocab.json
CHANGED
@@ -1 +1,41 @@
|
|
1 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"(": 1,
|
3 |
+
")": 2,
|
4 |
+
"0": 3,
|
5 |
+
"3": 4,
|
6 |
+
"7": 5,
|
7 |
+
"8": 6,
|
8 |
+
"9": 7,
|
9 |
+
"[PAD]": 38,
|
10 |
+
"[UNK]": 37,
|
11 |
+
"a": 8,
|
12 |
+
"b": 9,
|
13 |
+
"c": 10,
|
14 |
+
"d": 11,
|
15 |
+
"e": 12,
|
16 |
+
"f": 13,
|
17 |
+
"g": 14,
|
18 |
+
"h": 15,
|
19 |
+
"i": 16,
|
20 |
+
"j": 17,
|
21 |
+
"k": 18,
|
22 |
+
"l": 19,
|
23 |
+
"m": 20,
|
24 |
+
"n": 21,
|
25 |
+
"o": 22,
|
26 |
+
"p": 23,
|
27 |
+
"q": 24,
|
28 |
+
"r": 25,
|
29 |
+
"s": 26,
|
30 |
+
"t": 27,
|
31 |
+
"u": 28,
|
32 |
+
"v": 29,
|
33 |
+
"w": 30,
|
34 |
+
"x": 31,
|
35 |
+
"y": 32,
|
36 |
+
"z": 33,
|
37 |
+
"|": 0,
|
38 |
+
"å": 34,
|
39 |
+
"æ": 35,
|
40 |
+
"ø": 36
|
41 |
+
}
|