pere commited on
Commit
18159a1
1 Parent(s): 8b15ed7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -3
README.md CHANGED
@@ -1,3 +1,106 @@
1
- ---
2
- license: cc
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: wav2vec2-xlsr-1B-NPSC-NN
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # wav2vec2-xlsr-1B-NPSC-NN
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.4567
18
+ - Wer: 0.1533
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 6e-05
38
+ - train_batch_size: 8
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 2
42
+ - total_train_batch_size: 16
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 2000
46
+ - num_epochs: 50.0
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
52
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
53
+ | 1.6894 | 1.08 | 500 | 1.2423 | 0.8619 |
54
+ | 0.7543 | 2.15 | 1000 | 0.5956 | 0.3817 |
55
+ | 0.5481 | 3.23 | 1500 | 0.5043 | 0.3246 |
56
+ | 0.4661 | 4.3 | 2000 | 0.4813 | 0.2793 |
57
+ | 0.3901 | 5.38 | 2500 | 0.4371 | 0.2592 |
58
+ | 0.3512 | 6.45 | 3000 | 0.4216 | 0.2458 |
59
+ | 0.3016 | 7.53 | 3500 | 0.3814 | 0.2257 |
60
+ | 0.278 | 8.6 | 4000 | 0.4151 | 0.2145 |
61
+ | 0.2435 | 9.68 | 4500 | 0.4816 | 0.2130 |
62
+ | 0.2122 | 10.75 | 5000 | 0.4489 | 0.2137 |
63
+ | 0.1949 | 11.83 | 5500 | 0.3978 | 0.2063 |
64
+ | 0.1929 | 12.9 | 6000 | 0.3823 | 0.2026 |
65
+ | 0.1757 | 13.98 | 6500 | 0.3409 | 0.1965 |
66
+ | 0.1771 | 15.05 | 7000 | 0.3844 | 0.1936 |
67
+ | 0.1452 | 16.13 | 7500 | 0.3749 | 0.1900 |
68
+ | 0.1341 | 17.2 | 8000 | 0.4407 | 0.2026 |
69
+ | 0.13 | 18.28 | 8500 | 0.4253 | 0.1883 |
70
+ | 0.1183 | 19.35 | 9000 | 0.4311 | 0.1880 |
71
+ | 0.118 | 20.43 | 9500 | 0.4431 | 0.1882 |
72
+ | 0.1123 | 21.51 | 10000 | 0.4753 | 0.1820 |
73
+ | 0.1037 | 22.58 | 10500 | 0.4087 | 0.1834 |
74
+ | 0.1066 | 23.66 | 11000 | 0.4151 | 0.1845 |
75
+ | 0.0977 | 24.73 | 11500 | 0.4367 | 0.1783 |
76
+ | 0.0968 | 25.81 | 12000 | 0.4237 | 0.1756 |
77
+ | 0.0835 | 26.88 | 12500 | 0.4729 | 0.1781 |
78
+ | 0.0919 | 27.96 | 13000 | 0.4153 | 0.1701 |
79
+ | 0.0677 | 29.03 | 13500 | 0.4317 | 0.1693 |
80
+ | 0.0726 | 30.11 | 14000 | 0.4380 | 0.1736 |
81
+ | 0.066 | 31.18 | 14500 | 0.4384 | 0.1681 |
82
+ | 0.0713 | 32.26 | 15000 | 0.4215 | 0.1629 |
83
+ | 0.0605 | 33.33 | 15500 | 0.4574 | 0.1714 |
84
+ | 0.0632 | 34.41 | 16000 | 0.4343 | 0.1642 |
85
+ | 0.0567 | 35.48 | 16500 | 0.4231 | 0.1601 |
86
+ | 0.0556 | 36.56 | 17000 | 0.4404 | 0.1667 |
87
+ | 0.0426 | 37.63 | 17500 | 0.4459 | 0.1625 |
88
+ | 0.0445 | 38.71 | 18000 | 0.4484 | 0.1629 |
89
+ | 0.0463 | 39.78 | 18500 | 0.4508 | 0.1596 |
90
+ | 0.0448 | 40.86 | 19000 | 0.4395 | 0.1605 |
91
+ | 0.0434 | 41.94 | 19500 | 0.4490 | 0.1607 |
92
+ | 0.0347 | 43.01 | 20000 | 0.4772 | 0.1582 |
93
+ | 0.0332 | 44.09 | 20500 | 0.4729 | 0.1582 |
94
+ | 0.037 | 45.16 | 21000 | 0.4559 | 0.1573 |
95
+ | 0.0328 | 46.24 | 21500 | 0.4664 | 0.1560 |
96
+ | 0.0366 | 47.31 | 22000 | 0.4543 | 0.1543 |
97
+ | 0.0377 | 48.39 | 22500 | 0.4507 | 0.1560 |
98
+ | 0.0331 | 49.46 | 23000 | 0.4567 | 0.1533 |
99
+
100
+
101
+ ### Framework versions
102
+
103
+ - Transformers 4.17.0.dev0
104
+ - Pytorch 1.10.1+cu102
105
+ - Datasets 1.18.2.dev0
106
+ - Tokenizers 0.11.0