update model card README.md
Browse files
README.md
CHANGED
@@ -1,65 +1,175 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
-
- no
|
4 |
license: apache-2.0
|
5 |
tags:
|
6 |
-
-
|
7 |
-
- norwegian
|
8 |
datasets:
|
9 |
-
-
|
10 |
-
- NbAiLab/NPSC
|
11 |
-
- NbAiLab/NST
|
12 |
metrics:
|
13 |
- wer
|
14 |
model-index:
|
15 |
-
- name:
|
16 |
results:
|
17 |
- task:
|
18 |
name: Automatic Speech Recognition
|
19 |
type: automatic-speech-recognition
|
20 |
dataset:
|
21 |
-
name:
|
22 |
-
type:
|
23 |
-
config:
|
24 |
split: validation
|
25 |
-
args:
|
26 |
metrics:
|
27 |
- name: Wer
|
28 |
type: wer
|
29 |
-
value:
|
30 |
---
|
31 |
|
32 |
-
|
|
|
33 |
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
-
|
|
|
39 |
|
40 |
## Model description
|
41 |
|
42 |
-
|
43 |
|
44 |
## Intended uses & limitations
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
### Training hyperparameters
|
49 |
|
50 |
The following hyperparameters were used during training:
|
51 |
- learning_rate: 3e-06
|
52 |
-
- train_batch_size:
|
53 |
-
- eval_batch_size:
|
54 |
- seed: 42
|
55 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
-
- lr_scheduler_type:
|
57 |
- lr_scheduler_warmup_steps: 1000
|
58 |
-
- training_steps:
|
59 |
-
- mixed_precision_training:
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
|
|
|
65 |
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
+
- generated_from_trainer
|
|
|
5 |
datasets:
|
6 |
+
- ncc_s
|
|
|
|
|
7 |
metrics:
|
8 |
- wer
|
9 |
model-index:
|
10 |
+
- name: whisper-tiny-nob
|
11 |
results:
|
12 |
- task:
|
13 |
name: Automatic Speech Recognition
|
14 |
type: automatic-speech-recognition
|
15 |
dataset:
|
16 |
+
name: ncc_s
|
17 |
+
type: ncc_s
|
18 |
+
config: 'no'
|
19 |
split: validation
|
20 |
+
args: 'no'
|
21 |
metrics:
|
22 |
- name: Wer
|
23 |
type: wer
|
24 |
+
value: 24.96954933008526
|
25 |
---
|
26 |
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
|
30 |
+
# whisper-tiny-nob
|
31 |
|
32 |
+
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the ncc_s dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.5128
|
35 |
+
- Wer: 24.9695
|
36 |
|
37 |
## Model description
|
38 |
|
39 |
+
More information needed
|
40 |
|
41 |
## Intended uses & limitations
|
42 |
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
|
51 |
### Training hyperparameters
|
52 |
|
53 |
The following hyperparameters were used during training:
|
54 |
- learning_rate: 3e-06
|
55 |
+
- train_batch_size: 256
|
56 |
+
- eval_batch_size: 64
|
57 |
- seed: 42
|
58 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: constant_with_warmup
|
60 |
- lr_scheduler_warmup_steps: 1000
|
61 |
+
- training_steps: 100000
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
67 |
+
|:-------------:|:-----:|:------:|:---------------:|:-------:|
|
68 |
+
| 1.8819 | 0.01 | 1000 | 1.1869 | 61.9671 |
|
69 |
+
| 1.6425 | 0.02 | 2000 | 0.9991 | 53.6541 |
|
70 |
+
| 1.548 | 0.03 | 3000 | 0.9147 | 50.2132 |
|
71 |
+
| 1.4636 | 0.04 | 4000 | 0.8605 | 47.0767 |
|
72 |
+
| 1.4113 | 0.05 | 5000 | 0.8253 | 45.7369 |
|
73 |
+
| 1.3484 | 0.01 | 6000 | 0.7946 | 43.4531 |
|
74 |
+
| 1.3127 | 0.02 | 7000 | 0.7740 | 42.2655 |
|
75 |
+
| 1.2994 | 0.03 | 8000 | 0.7551 | 40.8952 |
|
76 |
+
| 1.265 | 0.04 | 9000 | 0.7378 | 39.8599 |
|
77 |
+
| 1.2458 | 0.05 | 10000 | 0.7257 | 39.8904 |
|
78 |
+
| 1.2257 | 0.06 | 11000 | 0.7114 | 39.7990 |
|
79 |
+
| 1.2126 | 0.07 | 12000 | 0.6972 | 37.8806 |
|
80 |
+
| 1.1971 | 0.08 | 13000 | 0.6871 | 37.3021 |
|
81 |
+
| 1.1786 | 1.01 | 14000 | 0.6786 | 37.4239 |
|
82 |
+
| 1.1486 | 1.02 | 15000 | 0.6703 | 36.9976 |
|
83 |
+
| 1.1505 | 1.03 | 16000 | 0.6647 | 36.3581 |
|
84 |
+
| 1.1238 | 1.04 | 17000 | 0.6559 | 36.3886 |
|
85 |
+
| 1.1184 | 1.05 | 18000 | 0.6509 | 36.5104 |
|
86 |
+
| 1.115 | 1.06 | 19000 | 0.6452 | 35.9927 |
|
87 |
+
| 1.1013 | 1.07 | 20000 | 0.6382 | 34.5006 |
|
88 |
+
| 1.0969 | 1.08 | 21000 | 0.6331 | 34.3484 |
|
89 |
+
| 1.0784 | 2.0 | 22000 | 0.6304 | 34.2875 |
|
90 |
+
| 1.0774 | 2.01 | 23000 | 0.6249 | 34.1048 |
|
91 |
+
| 1.0719 | 2.02 | 24000 | 0.6194 | 33.8307 |
|
92 |
+
| 1.0638 | 2.03 | 25000 | 0.6158 | 32.9781 |
|
93 |
+
| 1.0592 | 2.04 | 26000 | 0.6105 | 32.6431 |
|
94 |
+
| 1.0493 | 2.05 | 27000 | 0.6041 | 32.7345 |
|
95 |
+
| 1.047 | 2.06 | 28000 | 0.6040 | 32.7649 |
|
96 |
+
| 1.0323 | 2.07 | 29000 | 0.5984 | 31.6078 |
|
97 |
+
| 1.0189 | 3.0 | 30000 | 0.5957 | 31.3033 |
|
98 |
+
| 1.0078 | 3.01 | 31000 | 0.5924 | 31.4251 |
|
99 |
+
| 1.0146 | 3.02 | 32000 | 0.5940 | 31.3033 |
|
100 |
+
| 1.0128 | 3.03 | 33000 | 0.5892 | 31.0292 |
|
101 |
+
| 1.0025 | 3.04 | 34000 | 0.5873 | 31.1815 |
|
102 |
+
| 0.999 | 3.05 | 35000 | 0.5838 | 30.6334 |
|
103 |
+
| 1.0045 | 3.06 | 36000 | 0.5799 | 30.4202 |
|
104 |
+
| 1.0005 | 3.07 | 37000 | 0.5770 | 30.1766 |
|
105 |
+
| 1.0017 | 3.08 | 38000 | 0.5733 | 29.6590 |
|
106 |
+
| 0.9878 | 4.01 | 39000 | 0.5745 | 30.2680 |
|
107 |
+
| 0.9854 | 4.02 | 40000 | 0.5720 | 30.0548 |
|
108 |
+
| 0.9624 | 4.03 | 41000 | 0.5703 | 29.5981 |
|
109 |
+
| 0.9639 | 4.04 | 42000 | 0.5681 | 29.5067 |
|
110 |
+
| 0.9569 | 4.05 | 43000 | 0.5679 | 29.6285 |
|
111 |
+
| 0.9682 | 4.06 | 44000 | 0.5643 | 29.5676 |
|
112 |
+
| 0.9539 | 4.07 | 45000 | 0.5601 | 29.5676 |
|
113 |
+
| 0.946 | 4.08 | 46000 | 0.5562 | 29.7199 |
|
114 |
+
| 0.9429 | 5.01 | 47000 | 0.5592 | 29.2935 |
|
115 |
+
| 0.9462 | 5.02 | 48000 | 0.5540 | 29.0804 |
|
116 |
+
| 0.9312 | 5.03 | 49000 | 0.5535 | 29.2935 |
|
117 |
+
| 0.9462 | 5.04 | 50000 | 0.5536 | 28.6845 |
|
118 |
+
| 0.922 | 5.05 | 51000 | 0.5539 | 28.7150 |
|
119 |
+
| 0.9253 | 5.06 | 52000 | 0.5510 | 28.8368 |
|
120 |
+
| 0.9065 | 0.01 | 53000 | 0.5493 | 28.5932 |
|
121 |
+
| 0.9096 | 0.02 | 54000 | 0.5490 | 28.5018 |
|
122 |
+
| 0.9329 | 0.03 | 55000 | 0.5483 | 28.2887 |
|
123 |
+
| 0.9181 | 0.04 | 56000 | 0.5471 | 27.9842 |
|
124 |
+
| 0.914 | 0.05 | 57000 | 0.5457 | 28.4105 |
|
125 |
+
| 0.9149 | 0.06 | 58000 | 0.5449 | 27.5883 |
|
126 |
+
| 0.9092 | 0.07 | 59000 | 0.5405 | 27.8319 |
|
127 |
+
| 0.9101 | 0.08 | 60000 | 0.5402 | 27.3447 |
|
128 |
+
| 0.9046 | 1.01 | 61000 | 0.5374 | 27.5579 |
|
129 |
+
| 0.8917 | 1.02 | 62000 | 0.5390 | 27.7406 |
|
130 |
+
| 0.8993 | 1.03 | 63000 | 0.5386 | 27.4056 |
|
131 |
+
| 0.8875 | 1.04 | 64000 | 0.5361 | 26.8575 |
|
132 |
+
| 0.8892 | 1.05 | 65000 | 0.5358 | 27.3447 |
|
133 |
+
| 0.8929 | 1.06 | 66000 | 0.5346 | 26.7357 |
|
134 |
+
| 0.8703 | 0.01 | 67000 | 0.5332 | 26.8270 |
|
135 |
+
| 0.8709 | 0.02 | 68000 | 0.5336 | 26.7052 |
|
136 |
+
| 0.8917 | 0.03 | 69000 | 0.5329 | 27.0706 |
|
137 |
+
| 0.8867 | 0.04 | 70000 | 0.5323 | 26.3398 |
|
138 |
+
| 0.8778 | 0.05 | 71000 | 0.5315 | 27.2838 |
|
139 |
+
| 0.8757 | 0.06 | 72000 | 0.5317 | 26.2485 |
|
140 |
+
| 0.8726 | 0.07 | 73000 | 0.5269 | 26.6443 |
|
141 |
+
| 0.8792 | 0.08 | 74000 | 0.5268 | 26.1571 |
|
142 |
+
| 0.8706 | 1.01 | 75000 | 0.5247 | 26.1571 |
|
143 |
+
| 0.8585 | 1.02 | 76000 | 0.5265 | 26.3703 |
|
144 |
+
| 0.8659 | 1.03 | 77000 | 0.5262 | 26.7357 |
|
145 |
+
| 0.8551 | 1.04 | 78000 | 0.5249 | 26.0658 |
|
146 |
+
| 0.8572 | 1.05 | 79000 | 0.5249 | 26.2789 |
|
147 |
+
| 0.8612 | 1.06 | 80000 | 0.5235 | 25.7613 |
|
148 |
+
| 0.8598 | 1.07 | 81000 | 0.5208 | 25.7004 |
|
149 |
+
| 0.8686 | 1.08 | 82000 | 0.5214 | 25.7004 |
|
150 |
+
| 0.8503 | 2.0 | 83000 | 0.5214 | 25.7004 |
|
151 |
+
| 0.8545 | 2.01 | 84000 | 0.5215 | 28.2278 |
|
152 |
+
| 0.8594 | 2.02 | 85000 | 0.5186 | 25.6699 |
|
153 |
+
| 0.86 | 2.03 | 86000 | 0.5196 | 25.5786 |
|
154 |
+
| 0.8514 | 2.04 | 87000 | 0.5203 | 25.1827 |
|
155 |
+
| 0.8505 | 2.05 | 88000 | 0.5164 | 28.0146 |
|
156 |
+
| 0.8512 | 2.06 | 89000 | 0.5174 | 25.0914 |
|
157 |
+
| 0.8495 | 2.07 | 90000 | 0.5141 | 25.5481 |
|
158 |
+
| 0.8381 | 3.0 | 91000 | 0.5130 | 24.9695 |
|
159 |
+
| 0.8253 | 3.01 | 92000 | 0.5147 | 25.5786 |
|
160 |
+
| 0.8387 | 3.02 | 93000 | 0.5168 | 24.9086 |
|
161 |
+
| 0.8425 | 3.03 | 94000 | 0.5135 | 25.2436 |
|
162 |
+
| 0.8339 | 3.04 | 95000 | 0.5162 | 25.6699 |
|
163 |
+
| 0.8402 | 3.05 | 96000 | 0.5147 | 25.7308 |
|
164 |
+
| 0.8396 | 3.06 | 97000 | 0.5143 | 25.6699 |
|
165 |
+
| 0.8432 | 3.07 | 98000 | 0.5100 | 24.8782 |
|
166 |
+
| 0.844 | 3.08 | 99000 | 0.5100 | 25.0609 |
|
167 |
+
| 0.8333 | 4.01 | 100000 | 0.5128 | 24.9695 |
|
168 |
|
169 |
|
170 |
+
### Framework versions
|
171 |
|
172 |
+
- Transformers 4.26.0.dev0
|
173 |
+
- Pytorch 1.13.0+cu117
|
174 |
+
- Datasets 2.7.1.dev0
|
175 |
+
- Tokenizers 0.13.2
|