NebulaByte commited on
Commit
833b100
1 Parent(s): d0e2be6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -37
README.md CHANGED
@@ -1,28 +1,25 @@
1
  ---
2
- license: apache-2.0
3
- widget:
4
- - text: "अपने अनुप्रयोग को पहुंचनीयता व्यायाम"
5
- - text: "जनतंत्र की सफलता केवल इस बात से नहीं हो सकती है कि हर"
6
- - text: "अगर इसके बाद भी वे फैसले पर कायम रहते हैं और"
7
- - text: "मामले का खुलासा होने के बाद"
8
- - text: "My name is Julien and I like to"
9
- - text: "My name is Thomas and my main"
10
- inference:
11
- parameters:
12
- max_length: 200
13
  ---
14
 
15
- # Model Overview:
16
- The model is a language generation model designed for extending the GPT2 models to support Hindi language along with the original languages that it supports. It was fine-tuned on Hindi texts of [wikipedia](https://www.kaggle.com/datasets/disisbig/hindi-wikipedia-articles-55k) articles.
17
 
18
- # Model Architecture and Parameters:
19
- The model architecture is based on the GPT-2 framework, specifically using the parameters of the small version of the original OpenAI GPT2 model. It employs a Byte Pair Encoding (BPE) tokenizer.
20
 
21
- # Corpus:
22
- The training corpus for Hindi GPT2 consists of Wikipedia articles.
 
23
 
24
- # Tokenizer:
25
- A tokenizer is trained on Hindi Wikipedia Corpus. The new tokenizer vocabulary (5000 tokens) is merged with existing tokenizer. Hindi GPT2 uses a byte-level version of Byte Pair Encoding (BPE) for tokenizing Hindi text, including Unicode characters. The tokenizer has a vocabulary size of 53497, which allows it to effectively represent the Hindi language's rich vocabulary. Input sequences are formed by breaking the text into consecutive tokens with a maximum length of 1024 tokens.
 
26
 
27
  ## Intended uses & limitations
28
 
@@ -34,38 +31,34 @@ More information needed
34
 
35
  ## Training procedure
36
 
37
- More information needed
38
-
39
  ### Training hyperparameters
40
 
41
  The following hyperparameters were used during training:
42
  - learning_rate: 0.0005
43
- - train_batch_size: 64
44
- - eval_batch_size: 64
45
  - seed: 42
46
  - gradient_accumulation_steps: 4
47
- - total_train_batch_size: 256
48
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
  - lr_scheduler_type: cosine
50
- - lr_scheduler_warmup_steps: 500
51
  - num_epochs: 1
52
- - mixed_precision_training: Native AMP
53
 
54
  ### Training results
55
 
56
- | Step | Training Loss | Validation Loss |
57
- | :---- | :------------- | :--------------- |
58
- | 500 | 2.0016 | 1.066703 |
59
- | 1000 | 1.0314 | 0.959653 |
60
- | 1500 | 0.9593 | 0.918827 |
61
- | 2000 | 0.922 | 0.889607 |
62
- | 2500 | 0.8983 | 0.872523 |
63
- | 3000 | 0.8852 | 0.863592 |
64
 
65
 
66
  ### Framework versions
67
 
68
- - Transformers 4.30.2
69
- - torch 1.13.1
70
- - Datasets 2.13.1
71
  - Tokenizers 0.13.3
 
1
  ---
2
+ license: mit
3
+ base_model: gpt2
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: hindi_gpt2
8
+ results: []
 
 
 
 
9
  ---
10
 
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
 
14
+ # hindi_gpt2
 
15
 
16
+ This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 1.9187
19
 
20
+ ## Model description
21
+
22
+ More information needed
23
 
24
  ## Intended uses & limitations
25
 
 
31
 
32
  ## Training procedure
33
 
 
 
34
  ### Training hyperparameters
35
 
36
  The following hyperparameters were used during training:
37
  - learning_rate: 0.0005
38
+ - train_batch_size: 40
39
+ - eval_batch_size: 40
40
  - seed: 42
41
  - gradient_accumulation_steps: 4
42
+ - total_train_batch_size: 160
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: cosine
45
+ - lr_scheduler_warmup_steps: 400
46
  - num_epochs: 1
 
47
 
48
  ### Training results
49
 
50
+ | Training Loss | Epoch | Step | Validation Loss |
51
+ |:-------------:|:-----:|:----:|:---------------:|
52
+ | 4.694 | 0.18 | 400 | 2.7361 |
53
+ | 2.3952 | 0.35 | 800 | 2.1608 |
54
+ | 2.1311 | 0.53 | 1200 | 2.0237 |
55
+ | 2.0282 | 0.71 | 1600 | 1.9518 |
56
+ | 1.9731 | 0.89 | 2000 | 1.9187 |
 
57
 
58
 
59
  ### Framework versions
60
 
61
+ - Transformers 4.31.0
62
+ - Pytorch 2.0.1+cu118
63
+ - Datasets 2.14.2
64
  - Tokenizers 0.13.3