--- license: apache-2.0 base_model: NekoFi/content-manage-exp2 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: portrait_cosu_exp3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9148936170212766 - name: Precision type: precision value: 0.9189941972920695 - name: Recall type: recall value: 0.9148936170212766 - name: F1 type: f1 value: 0.9152832982620216 --- # portrait_cosu_exp3 This model is a fine-tuned version of [NekoFi/content-manage-exp2](https://huggingface.co/NekoFi/content-manage-exp2) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2524 - Accuracy: 0.9149 - Precision: 0.9190 - Recall: 0.9149 - F1: 0.9153 - Confusion Matrix: [[19, 1], [3, 24]] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Confusion Matrix | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------------------:| | No log | 0.9231 | 6 | 0.2921 | 0.8511 | 0.8527 | 0.8511 | 0.8515 | [[17, 3], [4, 23]] | | 0.5415 | 2.0 | 13 | 0.2564 | 0.9362 | 0.9426 | 0.9362 | 0.9353 | [[17, 3], [0, 27]] | | 0.5415 | 2.9231 | 19 | 0.3605 | 0.8723 | 0.8864 | 0.8723 | 0.8730 | [[19, 1], [5, 22]] | | 0.378 | 3.6923 | 24 | 0.2524 | 0.9149 | 0.9190 | 0.9149 | 0.9153 | [[19, 1], [3, 24]] | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1