File size: 3,992 Bytes
2f5d812 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
Algorithm: Shadow Classification for Vehicle Input: A mask image of the vehicle (binary values of 0 and 255). Four keypoints corresponding to the bottom-most points of the vehicle's tires: front-left, front-right, rear-left, rear-right. These are crucial for shadow generation. Steps: Step 1: Input and Preprocessing Take the vehicle mask (M) as input, which is a binary matrix where each pixel has a value of 0 (background) or 255 (vehicle). The four keypoints (K_fl, K_fr, K_rl, K_rr) are provided as pixel coordinates: πΎ π π = ( π₯ π π , π¦ π π ) K fl β =(x fl β ,y fl β ) πΎ π π = ( π₯ π π , π¦ π π ) K rl β =(x rl β ,y rl β ) Step 2: Calculate the Angle Between Keypoints Use the front-left and rear-left keypoints to calculate the angle the vehicle makes with the x-axis: π = tan β‘ β 1 ( π¦ π π β π¦ π π π₯ π π β π₯ π π ) ΞΈ=tan β1 ( x fl β βx rl β y fl β βy rl β β ) This gives the angle π ΞΈ in radians, which indicates how much the vehicle is inclined relative to the x-axis. Step 3: Rotate the Mask Rotate the mask M clockwise by angle π ΞΈ to align the vehicle along the x-axis. The rotation can be done using a rotation matrix or a simple image rotation function (e.g., using OpenCV's warpAffine). Mathematically, each pixel's new coordinates after rotation: ( π₯ β² π¦ β² ) = ( cos β‘ ( π ) sin β‘ ( π ) β sin β‘ ( π ) cos β‘ ( π ) ) ( π₯ π¦ ) ( x β² y β² β )=( cos(ΞΈ) βsin(ΞΈ) β sin(ΞΈ) cos(ΞΈ) β )( x y β ) Step 4: Recalculate Rear-left Keypoint After the mask rotation, recalculate the new position of the rear-left keypoint. Apply the same rotation transformation to get the new coordinates: πΎ π π β² = ( π₯ π π β² , π¦ π π β² ) K rl β² β =(x rl β² β ,y rl β² β ) Where: π₯ π π β² = π₯ π π cos β‘ ( π ) β π¦ π π sin β‘ ( π ) x rl β² β =x rl β cos(ΞΈ)βy rl β sin(ΞΈ) π¦ π π β² = π₯ π π sin β‘ ( π ) + π¦ π π cos β‘ ( π ) y rl β² β =x rl β sin(ΞΈ)+y rl β cos(ΞΈ) Step 5: Crop the Mask Center the cropped region around the new rear-left keypoint πΎ π π β² K rl β² β and crop a square of size ( π€ π π π‘ β = β π π π β π‘ = 100 Β pixels ) (width=height=100Β pixels). Crop dimensions: π₯ π π π = π₯ π π β² β 50 , π₯ π π π₯ = π₯ π π β² + 50 x min β =x rl β² β β50,x max β =x rl β² β +50 π¦ π π π = π¦ π π β² β 50 , π¦ π π π₯ = π¦ π π β² + 50 y min β =y rl β² β β50,y max β =y rl β² β +50 Step 6: Find Bottom-most Point In the cropped mask, identify the bottom-most point π΅ = ( π₯ π , π¦ π ) B=(x b β ,y b β ), where the pixel value is 255. π¦ π = max β‘ { π¦ β£ π ( π₯ , π¦ ) = 255 } y b β =max{yβ£M(x,y)=255} Step 7: Calculate Distance Compute the Euclidean distance π· D between the new rear-left keypoint πΎ π π β² K rl β² β and the bottom-most point π΅ B: π· = ( π₯ π π β² β π₯ π ) 2 + ( π¦ π π β² β π¦ π ) 2 D= (x rl β² β βx b β ) 2 +(y rl β² β βy b β ) 2 β Step 8: Shadow Classification If π· > 50 D>50 pixels, classify the shadow as bad (unrealistic or incorrect). Otherwise, classify the shadow as good. Mathematical Justification: Rotation is used to align the vehicle to the x-axis, ensuring that the keypoints are more easily analyzed. The distance threshold of 50 pixels helps determine if the shadow is too far from the vehicleβs edge (indicating that it might be unrealistic). This refined version adds mathematical clarity to each step and ensures the algorithm is robust in detecting unrealistic shadows. |