File size: 3,992 Bytes
2f5d812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
Algorithm: Shadow Classification for Vehicle
Input:

A mask image of the vehicle (binary values of 0 and 255).
Four keypoints corresponding to the bottom-most points of the vehicle's tires: front-left, front-right, rear-left, rear-right. These are crucial for shadow generation.
Steps:
Step 1: Input and Preprocessing
Take the vehicle mask (M) as input, which is a binary matrix where each pixel has a value of 0 (background) or 255 (vehicle).
The four keypoints (K_fl, K_fr, K_rl, K_rr) are provided as pixel coordinates:
𝐾
𝑓
𝑙
=
(
π‘₯
𝑓
𝑙
,
𝑦
𝑓
𝑙
)
K 
fl
​
 =(x 
fl
​
 ,y 
fl
​
 )
𝐾
π‘Ÿ
𝑙
=
(
π‘₯
π‘Ÿ
𝑙
,
𝑦
π‘Ÿ
𝑙
)
K 
rl
​
 =(x 
rl
​
 ,y 
rl
​
 )
Step 2: Calculate the Angle Between Keypoints
Use the front-left and rear-left keypoints to calculate the angle the vehicle makes with the x-axis:

πœƒ
=
tan
⁑
βˆ’
1
(
𝑦
𝑓
𝑙
βˆ’
𝑦
π‘Ÿ
𝑙
π‘₯
𝑓
𝑙
βˆ’
π‘₯
π‘Ÿ
𝑙
)
ΞΈ=tan 
βˆ’1
 ( 
x 
fl
​
 βˆ’x 
rl
​
 
y 
fl
​
 βˆ’y 
rl
​
 
​
 )
This gives the angle 
πœƒ
ΞΈ in radians, which indicates how much the vehicle is inclined relative to the x-axis.
Step 3: Rotate the Mask
Rotate the mask M clockwise by angle 
πœƒ
ΞΈ to align the vehicle along the x-axis. The rotation can be done using a rotation matrix or a simple image rotation function (e.g., using OpenCV's warpAffine).

Mathematically, each pixel's new coordinates after rotation:

(
π‘₯
β€²
𝑦
β€²
)
=
(
cos
⁑
(
πœƒ
)
sin
⁑
(
πœƒ
)
βˆ’
sin
⁑
(
πœƒ
)
cos
⁑
(
πœƒ
)
)
(
π‘₯
𝑦
)
( 
x 
β€²
 
y 
β€²
 
​
 )=( 
cos(ΞΈ)
βˆ’sin(ΞΈ)
​
  
sin(ΞΈ)
cos(ΞΈ)
​
 )( 
x
y
​
 )
Step 4: Recalculate Rear-left Keypoint
After the mask rotation, recalculate the new position of the rear-left keypoint. Apply the same rotation transformation to get the new coordinates:

𝐾
π‘Ÿ
𝑙
β€²
=
(
π‘₯
π‘Ÿ
𝑙
β€²
,
𝑦
π‘Ÿ
𝑙
β€²
)
K 
rl
β€²
​
 =(x 
rl
β€²
​
 ,y 
rl
β€²
​
 )
Where:

π‘₯
π‘Ÿ
𝑙
β€²
=
π‘₯
π‘Ÿ
𝑙
cos
⁑
(
πœƒ
)
βˆ’
𝑦
π‘Ÿ
𝑙
sin
⁑
(
πœƒ
)
x 
rl
β€²
​
 =x 
rl
​
 cos(ΞΈ)βˆ’y 
rl
​
 sin(ΞΈ)
𝑦
π‘Ÿ
𝑙
β€²
=
π‘₯
π‘Ÿ
𝑙
sin
⁑
(
πœƒ
)
+
𝑦
π‘Ÿ
𝑙
cos
⁑
(
πœƒ
)
y 
rl
β€²
​
 =x 
rl
​
 sin(ΞΈ)+y 
rl
​
 cos(ΞΈ)
Step 5: Crop the Mask
Center the cropped region around the new rear-left keypoint 
𝐾
π‘Ÿ
𝑙
β€²
K 
rl
β€²
​
  and crop a square of size 
(
𝑀
𝑖
𝑑
𝑑
β„Ž
=
β„Ž
𝑒
𝑖
𝑔
β„Ž
𝑑
=
100
Β pixels
)
(width=height=100Β pixels).

Crop dimensions:

π‘₯
π‘š
𝑖
𝑛
=
π‘₯
π‘Ÿ
𝑙
β€²
βˆ’
50
,
π‘₯
π‘š
π‘Ž
π‘₯
=
π‘₯
π‘Ÿ
𝑙
β€²
+
50
x 
min
​
 =x 
rl
β€²
​
 βˆ’50,x 
max
​
 =x 
rl
β€²
​
 +50
𝑦
π‘š
𝑖
𝑛
=
𝑦
π‘Ÿ
𝑙
β€²
βˆ’
50
,
𝑦
π‘š
π‘Ž
π‘₯
=
𝑦
π‘Ÿ
𝑙
β€²
+
50
y 
min
​
 =y 
rl
β€²
​
 βˆ’50,y 
max
​
 =y 
rl
β€²
​
 +50
Step 6: Find Bottom-most Point
In the cropped mask, identify the bottom-most point 
𝐡
=
(
π‘₯
𝑏
,
𝑦
𝑏
)
B=(x 
b
​
 ,y 
b
​
 ), where the pixel value is 255.

𝑦
𝑏
=
max
⁑
{
𝑦
∣
𝑀
(
π‘₯
,
𝑦
)
=
255
}
y 
b
​
 =max{y∣M(x,y)=255}
Step 7: Calculate Distance
Compute the Euclidean distance 
𝐷
D between the new rear-left keypoint 
𝐾
π‘Ÿ
𝑙
β€²
K 
rl
β€²
​
  and the bottom-most point 
𝐡
B:

𝐷
=
(
π‘₯
π‘Ÿ
𝑙
β€²
βˆ’
π‘₯
𝑏
)
2
+
(
𝑦
π‘Ÿ
𝑙
β€²
βˆ’
𝑦
𝑏
)
2
D= 
(x 
rl
β€²
​
 βˆ’x 
b
​
 ) 
2
 +(y 
rl
β€²
​
 βˆ’y 
b
​
 ) 
2
 
​
 
Step 8: Shadow Classification
If 
𝐷
>
50
D>50 pixels, classify the shadow as bad (unrealistic or incorrect). Otherwise, classify the shadow as good.
Mathematical Justification:
Rotation is used to align the vehicle to the x-axis, ensuring that the keypoints are more easily analyzed.
The distance threshold of 50 pixels helps determine if the shadow is too far from the vehicle’s edge (indicating that it might be unrealistic).
This refined version adds mathematical clarity to each step and ensures the algorithm is robust in detecting unrealistic shadows.