|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""Tool to export an object detection model for inference. |
|
|
|
Prepares an object detection tensorflow graph for inference using model |
|
configuration and a trained checkpoint. Outputs associated checkpoint files, |
|
a SavedModel, and a copy of the model config. |
|
|
|
The inference graph contains one of three input nodes depending on the user |
|
specified option. |
|
* `image_tensor`: Accepts a uint8 4-D tensor of shape [1, None, None, 3] |
|
* `float_image_tensor`: Accepts a float32 4-D tensor of shape |
|
[1, None, None, 3] |
|
* `encoded_image_string_tensor`: Accepts a 1-D string tensor of shape [None] |
|
containing encoded PNG or JPEG images. Image resolutions are expected to be |
|
the same if more than 1 image is provided. |
|
* `tf_example`: Accepts a 1-D string tensor of shape [None] containing |
|
serialized TFExample protos. Image resolutions are expected to be the same |
|
if more than 1 image is provided. |
|
|
|
and the following output nodes returned by the model.postprocess(..): |
|
* `num_detections`: Outputs float32 tensors of the form [batch] |
|
that specifies the number of valid boxes per image in the batch. |
|
* `detection_boxes`: Outputs float32 tensors of the form |
|
[batch, num_boxes, 4] containing detected boxes. |
|
* `detection_scores`: Outputs float32 tensors of the form |
|
[batch, num_boxes] containing class scores for the detections. |
|
* `detection_classes`: Outputs float32 tensors of the form |
|
[batch, num_boxes] containing classes for the detections. |
|
|
|
|
|
Example Usage: |
|
-------------- |
|
python exporter_main_v2.py \ |
|
--input_type image_tensor \ |
|
--pipeline_config_path path/to/ssd_inception_v2.config \ |
|
--trained_checkpoint_dir path/to/checkpoint \ |
|
--output_directory path/to/exported_model_directory |
|
--use_side_inputs True/False \ |
|
--side_input_shapes dim_0,dim_1,...dim_a/.../dim_0,dim_1,...,dim_z \ |
|
--side_input_names name_a,name_b,...,name_c \ |
|
--side_input_types type_1,type_2 |
|
|
|
The expected output would be in the directory |
|
path/to/exported_model_directory (which is created if it does not exist) |
|
holding two subdirectories (corresponding to checkpoint and SavedModel, |
|
respectively) and a copy of the pipeline config. |
|
|
|
Config overrides (see the `config_override` flag) are text protobufs |
|
(also of type pipeline_pb2.TrainEvalPipelineConfig) which are used to override |
|
certain fields in the provided pipeline_config_path. These are useful for |
|
making small changes to the inference graph that differ from the training or |
|
eval config. |
|
|
|
Example Usage (in which we change the second stage post-processing score |
|
threshold to be 0.5): |
|
|
|
python exporter_main_v2.py \ |
|
--input_type image_tensor \ |
|
--pipeline_config_path path/to/ssd_inception_v2.config \ |
|
--trained_checkpoint_dir path/to/checkpoint \ |
|
--output_directory path/to/exported_model_directory \ |
|
--config_override " \ |
|
model{ \ |
|
faster_rcnn { \ |
|
second_stage_post_processing { \ |
|
batch_non_max_suppression { \ |
|
score_threshold: 0.5 \ |
|
} \ |
|
} \ |
|
} \ |
|
}" |
|
|
|
If side inputs are desired, the following arguments could be appended |
|
(the example below is for Context R-CNN). |
|
--use_side_inputs True \ |
|
--side_input_shapes 1,2000,2057/1 \ |
|
--side_input_names context_features,valid_context_size \ |
|
--side_input_types tf.float32,tf.int32 |
|
""" |
|
from absl import app |
|
from absl import flags |
|
|
|
import tensorflow.compat.v2 as tf |
|
from google.protobuf import text_format |
|
from object_detection import exporter_lib_v2 |
|
from object_detection.protos import pipeline_pb2 |
|
|
|
tf.enable_v2_behavior() |
|
|
|
|
|
FLAGS = flags.FLAGS |
|
|
|
flags.DEFINE_string('input_type', 'image_tensor', 'Type of input node. Can be ' |
|
'one of [`image_tensor`, `encoded_image_string_tensor`, ' |
|
'`tf_example`, `float_image_tensor`]') |
|
flags.DEFINE_string('pipeline_config_path', None, |
|
'Path to a pipeline_pb2.TrainEvalPipelineConfig config ' |
|
'file.') |
|
flags.DEFINE_string('trained_checkpoint_dir', None, |
|
'Path to trained checkpoint directory') |
|
flags.DEFINE_string('output_directory', None, 'Path to write outputs.') |
|
flags.DEFINE_string('config_override', '', |
|
'pipeline_pb2.TrainEvalPipelineConfig ' |
|
'text proto to override pipeline_config_path.') |
|
flags.DEFINE_boolean('use_side_inputs', False, |
|
'If True, uses side inputs as well as image inputs.') |
|
flags.DEFINE_string('side_input_shapes', '', |
|
'If use_side_inputs is True, this explicitly sets ' |
|
'the shape of the side input tensors to a fixed size. The ' |
|
'dimensions are to be provided as a comma-separated list ' |
|
'of integers. A value of -1 can be used for unknown ' |
|
'dimensions. A `/` denotes a break, starting the shape of ' |
|
'the next side input tensor. This flag is required if ' |
|
'using side inputs.') |
|
flags.DEFINE_string('side_input_types', '', |
|
'If use_side_inputs is True, this explicitly sets ' |
|
'the type of the side input tensors. The ' |
|
'dimensions are to be provided as a comma-separated list ' |
|
'of types, each of `string`, `integer`, or `float`. ' |
|
'This flag is required if using side inputs.') |
|
flags.DEFINE_string('side_input_names', '', |
|
'If use_side_inputs is True, this explicitly sets ' |
|
'the names of the side input tensors required by the model ' |
|
'assuming the names will be a comma-separated list of ' |
|
'strings. This flag is required if using side inputs.') |
|
|
|
flags.mark_flag_as_required('pipeline_config_path') |
|
flags.mark_flag_as_required('trained_checkpoint_dir') |
|
flags.mark_flag_as_required('output_directory') |
|
|
|
|
|
def main(_): |
|
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() |
|
with tf.io.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f: |
|
text_format.Merge(f.read(), pipeline_config) |
|
text_format.Merge(FLAGS.config_override, pipeline_config) |
|
exporter_lib_v2.export_inference_graph( |
|
FLAGS.input_type, pipeline_config, FLAGS.trained_checkpoint_dir, |
|
FLAGS.output_directory, FLAGS.use_side_inputs, FLAGS.side_input_shapes, |
|
FLAGS.side_input_types, FLAGS.side_input_names) |
|
|
|
|
|
if __name__ == '__main__': |
|
app.run(main) |
|
|