|
import torch |
|
from torch import nn |
|
from torch.utils.data import DataLoader |
|
|
|
# Hyperparameters |
|
image_size = (224, 224, 3) # Adjust based on your data |
|
|
|
# Define the Generator Network |
|
class Generator(nn.Module): |
|
def __init__(self): |
|
super(Generator, self).__init__() |
|
# Define convolutional layers with appropriate filters and activations |
|
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1) |
|
# ... Add more convolutional layers as needed |
|
self.conv_final = nn.Conv2d(128, 3, kernel_size=3, stride=1, padding=1, activation=nn.Tanh) # Tanh for shadow intensity |
|
|
|
def forward(self, x): |
|
# Define the forward pass through the convolutional layers |
|
x = self.conv1(x) |
|
# ... Forward pass through remaining convolutional layers |
|
return self.conv_final(x) |
|
|
|
# Define the Discriminator Network |
|
class Discriminator(nn.Module): |
|
def __init__(self): |
|
super(Discriminator, self).__init__() |
|
# Define convolutional layers with appropriate filters and activations |
|
self.conv1 = nn.Conv2d(6, 32, kernel_size=3, stride=1, padding=1) |
|
# ... Add more convolutional layers as needed |
|
self.linear = nn.Linear(128, 1) # Final layer with sigmoid activation |
|
|
|
def forward(self, car, shadow): |
|
# Concatenate car and shadow features |
|
x = torch.cat([car, shadow], dim=1) |
|
# Define the forward pass through the convolutional layers |
|
x = self.conv1(x) |
|
# ... Forward pass through remaining convolutional layers |
|
return torch.sigmoid(self.linear(x)) |
|
|
|
# Create data loaders for training and validation data |
|
# ... (Implement data loading logic using PyTorch's DataLoader) |
|
|
|
# Create the models |
|
generator = Generator() |
|
discriminator = Discriminator() |
|
|
|
# Define loss function and optimizer |
|
criterion = nn.BCELoss() |
|
g_optimizer = torch.optim.Adam(generator.parameters(), lr=0.0002) |
|
d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=0.0002) |
|
|
|
# Training loop |
|
for epoch in range(epochs): |
|
# Train the Discriminator |
|
# ... (Implement discriminator training logic with loss calculation and updates) |
|
|
|
# Train the Generator |
|
# ... (Implement generator training logic with loss calculation and updates) |
|
|
|
# Print training progress |
|
# ... (Print loss values or other metrics) |
|
|
|
# Save the trained generator |
|
torch.save(generator.state_dict(), 'generator.pt') |
|
|