Finetuned-MobilVIT / car_damage_detection.py
Nekshay's picture
Create car_damage_detection.py
477ab1d
raw
history blame
3.02 kB
from matplotlib.pyplot import axis
import gradio as gr
import requests
import numpy as np
from torch import nn
import requests
import torch
import detectron2
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
from detectron2.utils.visualizer import ColorMode
model_path = 'model_final.pth'
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.6
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1
cfg.MODEL.WEIGHTS = model_path
if not torch.cuda.is_available():
cfg.MODEL.DEVICE='cpu'
predictor = DefaultPredictor(cfg)
my_metadata = MetadataCatalog.get("car_dataset_val")
my_metadata.thing_classes = ["damage"]
def merge_segment(pred_segm):
merge_dict = {}
for i in range(len(pred_segm)):
merge_dict[i] = []
for j in range(i+1,len(pred_segm)):
if torch.sum(pred_segm[i]*pred_segm[j])>0:
merge_dict[i].append(j)
to_delete = []
for key in merge_dict:
for element in merge_dict[key]:
to_delete.append(element)
for element in to_delete:
merge_dict.pop(element,None)
empty_delete = []
for key in merge_dict:
if merge_dict[key] == []:
empty_delete.append(key)
for element in empty_delete:
merge_dict.pop(element,None)
for key in merge_dict:
for element in merge_dict[key]:
pred_segm[key]+=pred_segm[element]
except_elem = list(set(to_delete))
new_indexes = list(range(len(pred_segm)))
for elem in except_elem:
new_indexes.remove(elem)
return pred_segm[new_indexes]
def inference(image):
print(image.height)
height = image.height
# img = np.array(image.resize((500, height)))
img = np.array(image)
outputs = predictor(img)
out_dict = outputs["instances"].to("cpu").get_fields()
new_inst = detectron2.structures.Instances((1024,1024))
new_inst.set('pred_masks',merge_segment(out_dict['pred_masks']))
v = Visualizer(img[:, :, ::-1],
metadata=my_metadata,
scale=0.5,
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models
)
# v = Visualizer(img,scale=1.2)
#print(outputs["instances"].to('cpu'))
out = v.draw_instance_predictions(new_inst)
return out.get_image()[:, :, ::-1]
title = "Detectron2 Car damage Detection"
description = "This demo introduces an interactive playground for our trained Detectron2 model."
gr.Interface(
inference,
[gr.inputs.Image(type="pil", label="Input")],
gr.outputs.Image(type="numpy", label="Output"),
title=title,
description=description,
examples=[]).launch()