Update Train_code_mobilenet
Browse files- Train_code_mobilenet +95 -0
Train_code_mobilenet
CHANGED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow.keras.applications import MobileNet
|
3 |
+
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
|
4 |
+
from tensorflow.keras.models import Model
|
5 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
6 |
+
|
7 |
+
# Load the MobileNet base model
|
8 |
+
base_model = MobileNet(weights='imagenet', include_top=False)
|
9 |
+
|
10 |
+
# Add custom classification layers
|
11 |
+
x = base_model.output
|
12 |
+
x = GlobalAveragePooling2D()(x)
|
13 |
+
x = Dense(1024, activation='relu')(x)
|
14 |
+
num_classes=2
|
15 |
+
predictions = Dense(num_classes, activation='softmax')(x)
|
16 |
+
|
17 |
+
model = Model(inputs=base_model.input, outputs=predictions)
|
18 |
+
|
19 |
+
# Compile the model
|
20 |
+
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
21 |
+
|
22 |
+
# Data augmentation and preprocessing
|
23 |
+
|
24 |
+
|
25 |
+
train_datagen = ImageDataGenerator(
|
26 |
+
preprocessing_function=tf.keras.applications.mobilenet.preprocess_input,
|
27 |
+
rotation_range=20,
|
28 |
+
width_shift_range=0.2,
|
29 |
+
height_shift_range=0.2,
|
30 |
+
horizontal_flip=True
|
31 |
+
)
|
32 |
+
batch_size=16
|
33 |
+
train_generator = train_datagen.flow_from_directory(
|
34 |
+
'/content/tire-dataset/train_data',
|
35 |
+
target_size=(224, 224),
|
36 |
+
batch_size=batch_size,
|
37 |
+
class_mode='categorical'
|
38 |
+
)
|
39 |
+
|
40 |
+
test_datagen = ImageDataGenerator(
|
41 |
+
preprocessing_function=tf.keras.applications.mobilenet.preprocess_input,
|
42 |
+
rotation_range=20,
|
43 |
+
width_shift_range=0.2,
|
44 |
+
height_shift_range=0.2,
|
45 |
+
horizontal_flip=True
|
46 |
+
)
|
47 |
+
batch_size=16
|
48 |
+
|
49 |
+
|
50 |
+
# Train the model
|
51 |
+
num_epochs=1
|
52 |
+
model.fit(train_generator, epochs=num_epochs)
|
53 |
+
|
54 |
+
# Evaluate the model on the test set
|
55 |
+
test_generator = test_datagen.flow_from_directory(
|
56 |
+
'/content/tire-dataset/test_data',
|
57 |
+
target_size=(224, 224),
|
58 |
+
batch_size=batch_size,
|
59 |
+
class_mode='categorical'
|
60 |
+
)
|
61 |
+
|
62 |
+
accuracy = model.evaluate(test_generator)
|
63 |
+
print('Test accuracy:', accuracy)
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
from tensorflow import keras
|
68 |
+
from tensorflow.keras.preprocessing import image
|
69 |
+
from tensorflow.keras.applications.mobilenet import preprocess_input, decode_predictions
|
70 |
+
import numpy as np
|
71 |
+
|
72 |
+
# Load the model
|
73 |
+
#model = keras.models.load_model('path_to_your_model.h5')
|
74 |
+
|
75 |
+
# Load and preprocess an image for inference
|
76 |
+
img_path = '/content/tire-dataset/test_data/Tire/00000.jpg'
|
77 |
+
img = image.load_img(img_path, target_size=(224, 224))
|
78 |
+
x = image.img_to_array(img)
|
79 |
+
x = np.expand_dims(x, axis=0)
|
80 |
+
x = preprocess_input(x)
|
81 |
+
|
82 |
+
# Make a prediction
|
83 |
+
predictions = model.predict(x)
|
84 |
+
|
85 |
+
# Decode and display the prediction
|
86 |
+
# decoded_predictions = decode_predictions(predictions, top=3)[0]
|
87 |
+
# for label, description, score in decoded_predictions:
|
88 |
+
# print(f'{label}: {description} ({score:.2f})')
|
89 |
+
|
90 |
+
|
91 |
+
model.save('/content/model_keras/keras_model.h5')
|
92 |
+
|
93 |
+
|
94 |
+
!tensorflowjs_converter --input_format=keras --output_format=tfjs_graph_model --split_weights_by_layer --weight_shard_size_bytes=99999999 --quantize_float16=* /content/model_keras/keras_model.h5 ./model_tfjs
|
95 |
+
|