try: import detectron2 except: import os os.system('pip install git+https://github.com/facebookresearch/detectron2.git') from matplotlib.pyplot import axis import gradio as gr import requests import numpy as np from torch import nn import requests import torch import detectron2 from detectron2 import model_zoo from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.data import MetadataCatalog from detectron2.utils.visualizer import ColorMode model_path = 'model_final.pth' cfg = get_cfg() cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.75 cfg.MODEL.ROI_HEADS.NUM_CLASSES = 19 cfg.MODEL.WEIGHTS = model_path if not torch.cuda.is_available(): cfg.MODEL.DEVICE='cpu' predictor = DefaultPredictor(cfg) my_metadata = MetadataCatalog.get("car_part_merged_dataset_val") my_metadata.thing_classes = ['_background_', 'back_bumper', 'back_glass', 'back_left_door', 'back_left_light', 'back_right_door', 'back_right_light', 'front_bumper', 'front_glass', 'front_left_door', 'front_left_light', 'front_right_door', 'front_right_light', 'hood', 'left_mirror', 'right_mirror', 'tailgate', 'trunk', 'wheel'] def inference(image): print(image.height) height = image.height # img = np.array(image.resize((500, height))) img = np.array(image) outputs = predictor(img) v = Visualizer(img[:, :, ::-1], metadata=my_metadata, scale=0.5, instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models ) #v = Visualizer(img,scale=1.2) #print(outputs["instances"].to('cpu')) out = v.draw_instance_predictions(outputs["instances"]) return out.get_image()[:, :, ::-1] title = "Detectron2 Car Parts Detection" description = "This demo introduces an interactive playground for our trained Detectron2 model." gr.Interface( inference, [gr.inputs.Image(type="pil", label="Input")], gr.outputs.Image(type="numpy", label="Output"), title=title, description=description, examples=[]).launch()