Nekshay commited on
Commit
cd142b9
1 Parent(s): 2d08da1

Upload SWIN_ONNX.ipynb

Browse files
Files changed (1) hide show
  1. SWIN_ONNX.ipynb +1701 -0
SWIN_ONNX.ipynb ADDED
@@ -0,0 +1,1701 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "provenance": [],
7
+ "gpuType": "T4"
8
+ },
9
+ "kernelspec": {
10
+ "name": "python3",
11
+ "display_name": "Python 3"
12
+ },
13
+ "language_info": {
14
+ "name": "python"
15
+ },
16
+ "accelerator": "GPU",
17
+ "widgets": {
18
+ "application/vnd.jupyter.widget-state+json": {
19
+ "58533d8fb59449359914fe9f384d7623": {
20
+ "model_module": "@jupyter-widgets/controls",
21
+ "model_name": "HBoxModel",
22
+ "model_module_version": "1.5.0",
23
+ "state": {
24
+ "_dom_classes": [],
25
+ "_model_module": "@jupyter-widgets/controls",
26
+ "_model_module_version": "1.5.0",
27
+ "_model_name": "HBoxModel",
28
+ "_view_count": null,
29
+ "_view_module": "@jupyter-widgets/controls",
30
+ "_view_module_version": "1.5.0",
31
+ "_view_name": "HBoxView",
32
+ "box_style": "",
33
+ "children": [
34
+ "IPY_MODEL_c0d3b5a444614ce5a2a53132cd38ecf7",
35
+ "IPY_MODEL_7080ae74b8314eecb4bca56a6d874074",
36
+ "IPY_MODEL_4b93501f67a54b088ed1ba2fb05af3f5"
37
+ ],
38
+ "layout": "IPY_MODEL_a9a1867e5ec2418da340ca72165e8ccf"
39
+ }
40
+ },
41
+ "c0d3b5a444614ce5a2a53132cd38ecf7": {
42
+ "model_module": "@jupyter-widgets/controls",
43
+ "model_name": "HTMLModel",
44
+ "model_module_version": "1.5.0",
45
+ "state": {
46
+ "_dom_classes": [],
47
+ "_model_module": "@jupyter-widgets/controls",
48
+ "_model_module_version": "1.5.0",
49
+ "_model_name": "HTMLModel",
50
+ "_view_count": null,
51
+ "_view_module": "@jupyter-widgets/controls",
52
+ "_view_module_version": "1.5.0",
53
+ "_view_name": "HTMLView",
54
+ "description": "",
55
+ "description_tooltip": null,
56
+ "layout": "IPY_MODEL_0dc1167df3094a47b443b090d2423f77",
57
+ "placeholder": "​",
58
+ "style": "IPY_MODEL_0b719479d1be4375b222943be38fbe8c",
59
+ "value": "Downloading (…)rocessor_config.json: 100%"
60
+ }
61
+ },
62
+ "7080ae74b8314eecb4bca56a6d874074": {
63
+ "model_module": "@jupyter-widgets/controls",
64
+ "model_name": "FloatProgressModel",
65
+ "model_module_version": "1.5.0",
66
+ "state": {
67
+ "_dom_classes": [],
68
+ "_model_module": "@jupyter-widgets/controls",
69
+ "_model_module_version": "1.5.0",
70
+ "_model_name": "FloatProgressModel",
71
+ "_view_count": null,
72
+ "_view_module": "@jupyter-widgets/controls",
73
+ "_view_module_version": "1.5.0",
74
+ "_view_name": "ProgressView",
75
+ "bar_style": "success",
76
+ "description": "",
77
+ "description_tooltip": null,
78
+ "layout": "IPY_MODEL_f563cfc830374a64830bd966c99b36b6",
79
+ "max": 240,
80
+ "min": 0,
81
+ "orientation": "horizontal",
82
+ "style": "IPY_MODEL_220fe2a0503346a1bb8ae1832a85cfb0",
83
+ "value": 240
84
+ }
85
+ },
86
+ "4b93501f67a54b088ed1ba2fb05af3f5": {
87
+ "model_module": "@jupyter-widgets/controls",
88
+ "model_name": "HTMLModel",
89
+ "model_module_version": "1.5.0",
90
+ "state": {
91
+ "_dom_classes": [],
92
+ "_model_module": "@jupyter-widgets/controls",
93
+ "_model_module_version": "1.5.0",
94
+ "_model_name": "HTMLModel",
95
+ "_view_count": null,
96
+ "_view_module": "@jupyter-widgets/controls",
97
+ "_view_module_version": "1.5.0",
98
+ "_view_name": "HTMLView",
99
+ "description": "",
100
+ "description_tooltip": null,
101
+ "layout": "IPY_MODEL_e4426b319cfb4dbea1073c0aa27da6da",
102
+ "placeholder": "​",
103
+ "style": "IPY_MODEL_120e83bb6f86425f9a67ddf816ee812a",
104
+ "value": " 240/240 [00:00<00:00, 12.5kB/s]"
105
+ }
106
+ },
107
+ "a9a1867e5ec2418da340ca72165e8ccf": {
108
+ "model_module": "@jupyter-widgets/base",
109
+ "model_name": "LayoutModel",
110
+ "model_module_version": "1.2.0",
111
+ "state": {
112
+ "_model_module": "@jupyter-widgets/base",
113
+ "_model_module_version": "1.2.0",
114
+ "_model_name": "LayoutModel",
115
+ "_view_count": null,
116
+ "_view_module": "@jupyter-widgets/base",
117
+ "_view_module_version": "1.2.0",
118
+ "_view_name": "LayoutView",
119
+ "align_content": null,
120
+ "align_items": null,
121
+ "align_self": null,
122
+ "border": null,
123
+ "bottom": null,
124
+ "display": null,
125
+ "flex": null,
126
+ "flex_flow": null,
127
+ "grid_area": null,
128
+ "grid_auto_columns": null,
129
+ "grid_auto_flow": null,
130
+ "grid_auto_rows": null,
131
+ "grid_column": null,
132
+ "grid_gap": null,
133
+ "grid_row": null,
134
+ "grid_template_areas": null,
135
+ "grid_template_columns": null,
136
+ "grid_template_rows": null,
137
+ "height": null,
138
+ "justify_content": null,
139
+ "justify_items": null,
140
+ "left": null,
141
+ "margin": null,
142
+ "max_height": null,
143
+ "max_width": null,
144
+ "min_height": null,
145
+ "min_width": null,
146
+ "object_fit": null,
147
+ "object_position": null,
148
+ "order": null,
149
+ "overflow": null,
150
+ "overflow_x": null,
151
+ "overflow_y": null,
152
+ "padding": null,
153
+ "right": null,
154
+ "top": null,
155
+ "visibility": null,
156
+ "width": null
157
+ }
158
+ },
159
+ "0dc1167df3094a47b443b090d2423f77": {
160
+ "model_module": "@jupyter-widgets/base",
161
+ "model_name": "LayoutModel",
162
+ "model_module_version": "1.2.0",
163
+ "state": {
164
+ "_model_module": "@jupyter-widgets/base",
165
+ "_model_module_version": "1.2.0",
166
+ "_model_name": "LayoutModel",
167
+ "_view_count": null,
168
+ "_view_module": "@jupyter-widgets/base",
169
+ "_view_module_version": "1.2.0",
170
+ "_view_name": "LayoutView",
171
+ "align_content": null,
172
+ "align_items": null,
173
+ "align_self": null,
174
+ "border": null,
175
+ "bottom": null,
176
+ "display": null,
177
+ "flex": null,
178
+ "flex_flow": null,
179
+ "grid_area": null,
180
+ "grid_auto_columns": null,
181
+ "grid_auto_flow": null,
182
+ "grid_auto_rows": null,
183
+ "grid_column": null,
184
+ "grid_gap": null,
185
+ "grid_row": null,
186
+ "grid_template_areas": null,
187
+ "grid_template_columns": null,
188
+ "grid_template_rows": null,
189
+ "height": null,
190
+ "justify_content": null,
191
+ "justify_items": null,
192
+ "left": null,
193
+ "margin": null,
194
+ "max_height": null,
195
+ "max_width": null,
196
+ "min_height": null,
197
+ "min_width": null,
198
+ "object_fit": null,
199
+ "object_position": null,
200
+ "order": null,
201
+ "overflow": null,
202
+ "overflow_x": null,
203
+ "overflow_y": null,
204
+ "padding": null,
205
+ "right": null,
206
+ "top": null,
207
+ "visibility": null,
208
+ "width": null
209
+ }
210
+ },
211
+ "0b719479d1be4375b222943be38fbe8c": {
212
+ "model_module": "@jupyter-widgets/controls",
213
+ "model_name": "DescriptionStyleModel",
214
+ "model_module_version": "1.5.0",
215
+ "state": {
216
+ "_model_module": "@jupyter-widgets/controls",
217
+ "_model_module_version": "1.5.0",
218
+ "_model_name": "DescriptionStyleModel",
219
+ "_view_count": null,
220
+ "_view_module": "@jupyter-widgets/base",
221
+ "_view_module_version": "1.2.0",
222
+ "_view_name": "StyleView",
223
+ "description_width": ""
224
+ }
225
+ },
226
+ "f563cfc830374a64830bd966c99b36b6": {
227
+ "model_module": "@jupyter-widgets/base",
228
+ "model_name": "LayoutModel",
229
+ "model_module_version": "1.2.0",
230
+ "state": {
231
+ "_model_module": "@jupyter-widgets/base",
232
+ "_model_module_version": "1.2.0",
233
+ "_model_name": "LayoutModel",
234
+ "_view_count": null,
235
+ "_view_module": "@jupyter-widgets/base",
236
+ "_view_module_version": "1.2.0",
237
+ "_view_name": "LayoutView",
238
+ "align_content": null,
239
+ "align_items": null,
240
+ "align_self": null,
241
+ "border": null,
242
+ "bottom": null,
243
+ "display": null,
244
+ "flex": null,
245
+ "flex_flow": null,
246
+ "grid_area": null,
247
+ "grid_auto_columns": null,
248
+ "grid_auto_flow": null,
249
+ "grid_auto_rows": null,
250
+ "grid_column": null,
251
+ "grid_gap": null,
252
+ "grid_row": null,
253
+ "grid_template_areas": null,
254
+ "grid_template_columns": null,
255
+ "grid_template_rows": null,
256
+ "height": null,
257
+ "justify_content": null,
258
+ "justify_items": null,
259
+ "left": null,
260
+ "margin": null,
261
+ "max_height": null,
262
+ "max_width": null,
263
+ "min_height": null,
264
+ "min_width": null,
265
+ "object_fit": null,
266
+ "object_position": null,
267
+ "order": null,
268
+ "overflow": null,
269
+ "overflow_x": null,
270
+ "overflow_y": null,
271
+ "padding": null,
272
+ "right": null,
273
+ "top": null,
274
+ "visibility": null,
275
+ "width": null
276
+ }
277
+ },
278
+ "220fe2a0503346a1bb8ae1832a85cfb0": {
279
+ "model_module": "@jupyter-widgets/controls",
280
+ "model_name": "ProgressStyleModel",
281
+ "model_module_version": "1.5.0",
282
+ "state": {
283
+ "_model_module": "@jupyter-widgets/controls",
284
+ "_model_module_version": "1.5.0",
285
+ "_model_name": "ProgressStyleModel",
286
+ "_view_count": null,
287
+ "_view_module": "@jupyter-widgets/base",
288
+ "_view_module_version": "1.2.0",
289
+ "_view_name": "StyleView",
290
+ "bar_color": null,
291
+ "description_width": ""
292
+ }
293
+ },
294
+ "e4426b319cfb4dbea1073c0aa27da6da": {
295
+ "model_module": "@jupyter-widgets/base",
296
+ "model_name": "LayoutModel",
297
+ "model_module_version": "1.2.0",
298
+ "state": {
299
+ "_model_module": "@jupyter-widgets/base",
300
+ "_model_module_version": "1.2.0",
301
+ "_model_name": "LayoutModel",
302
+ "_view_count": null,
303
+ "_view_module": "@jupyter-widgets/base",
304
+ "_view_module_version": "1.2.0",
305
+ "_view_name": "LayoutView",
306
+ "align_content": null,
307
+ "align_items": null,
308
+ "align_self": null,
309
+ "border": null,
310
+ "bottom": null,
311
+ "display": null,
312
+ "flex": null,
313
+ "flex_flow": null,
314
+ "grid_area": null,
315
+ "grid_auto_columns": null,
316
+ "grid_auto_flow": null,
317
+ "grid_auto_rows": null,
318
+ "grid_column": null,
319
+ "grid_gap": null,
320
+ "grid_row": null,
321
+ "grid_template_areas": null,
322
+ "grid_template_columns": null,
323
+ "grid_template_rows": null,
324
+ "height": null,
325
+ "justify_content": null,
326
+ "justify_items": null,
327
+ "left": null,
328
+ "margin": null,
329
+ "max_height": null,
330
+ "max_width": null,
331
+ "min_height": null,
332
+ "min_width": null,
333
+ "object_fit": null,
334
+ "object_position": null,
335
+ "order": null,
336
+ "overflow": null,
337
+ "overflow_x": null,
338
+ "overflow_y": null,
339
+ "padding": null,
340
+ "right": null,
341
+ "top": null,
342
+ "visibility": null,
343
+ "width": null
344
+ }
345
+ },
346
+ "120e83bb6f86425f9a67ddf816ee812a": {
347
+ "model_module": "@jupyter-widgets/controls",
348
+ "model_name": "DescriptionStyleModel",
349
+ "model_module_version": "1.5.0",
350
+ "state": {
351
+ "_model_module": "@jupyter-widgets/controls",
352
+ "_model_module_version": "1.5.0",
353
+ "_model_name": "DescriptionStyleModel",
354
+ "_view_count": null,
355
+ "_view_module": "@jupyter-widgets/base",
356
+ "_view_module_version": "1.2.0",
357
+ "_view_name": "StyleView",
358
+ "description_width": ""
359
+ }
360
+ },
361
+ "b5d50e4527b148c89b8039c3c73028d1": {
362
+ "model_module": "@jupyter-widgets/controls",
363
+ "model_name": "HBoxModel",
364
+ "model_module_version": "1.5.0",
365
+ "state": {
366
+ "_dom_classes": [],
367
+ "_model_module": "@jupyter-widgets/controls",
368
+ "_model_module_version": "1.5.0",
369
+ "_model_name": "HBoxModel",
370
+ "_view_count": null,
371
+ "_view_module": "@jupyter-widgets/controls",
372
+ "_view_module_version": "1.5.0",
373
+ "_view_name": "HBoxView",
374
+ "box_style": "",
375
+ "children": [
376
+ "IPY_MODEL_5029579d27b14d5eba2df29b60ca062c",
377
+ "IPY_MODEL_167c4b3bd9724a11abc4ff4345b0e800",
378
+ "IPY_MODEL_b4c5c4f4f72545678722c2707b06e459"
379
+ ],
380
+ "layout": "IPY_MODEL_bd74b18070114aedaa0a4e8a22b4c181"
381
+ }
382
+ },
383
+ "5029579d27b14d5eba2df29b60ca062c": {
384
+ "model_module": "@jupyter-widgets/controls",
385
+ "model_name": "HTMLModel",
386
+ "model_module_version": "1.5.0",
387
+ "state": {
388
+ "_dom_classes": [],
389
+ "_model_module": "@jupyter-widgets/controls",
390
+ "_model_module_version": "1.5.0",
391
+ "_model_name": "HTMLModel",
392
+ "_view_count": null,
393
+ "_view_module": "@jupyter-widgets/controls",
394
+ "_view_module_version": "1.5.0",
395
+ "_view_name": "HTMLView",
396
+ "description": "",
397
+ "description_tooltip": null,
398
+ "layout": "IPY_MODEL_90fb0a4e62b242a1ba9ef0e9c02d8a70",
399
+ "placeholder": "​",
400
+ "style": "IPY_MODEL_1b2af4a15e33491d8ce6833c1f4f42e3",
401
+ "value": "Downloading (…)lve/main/config.json: 100%"
402
+ }
403
+ },
404
+ "167c4b3bd9724a11abc4ff4345b0e800": {
405
+ "model_module": "@jupyter-widgets/controls",
406
+ "model_name": "FloatProgressModel",
407
+ "model_module_version": "1.5.0",
408
+ "state": {
409
+ "_dom_classes": [],
410
+ "_model_module": "@jupyter-widgets/controls",
411
+ "_model_module_version": "1.5.0",
412
+ "_model_name": "FloatProgressModel",
413
+ "_view_count": null,
414
+ "_view_module": "@jupyter-widgets/controls",
415
+ "_view_module_version": "1.5.0",
416
+ "_view_name": "ProgressView",
417
+ "bar_style": "success",
418
+ "description": "",
419
+ "description_tooltip": null,
420
+ "layout": "IPY_MODEL_085d8ad9e0744a1782800c4f8a260db0",
421
+ "max": 1470,
422
+ "min": 0,
423
+ "orientation": "horizontal",
424
+ "style": "IPY_MODEL_eb18e0481db84258a8a2d90e55c6e4e0",
425
+ "value": 1470
426
+ }
427
+ },
428
+ "b4c5c4f4f72545678722c2707b06e459": {
429
+ "model_module": "@jupyter-widgets/controls",
430
+ "model_name": "HTMLModel",
431
+ "model_module_version": "1.5.0",
432
+ "state": {
433
+ "_dom_classes": [],
434
+ "_model_module": "@jupyter-widgets/controls",
435
+ "_model_module_version": "1.5.0",
436
+ "_model_name": "HTMLModel",
437
+ "_view_count": null,
438
+ "_view_module": "@jupyter-widgets/controls",
439
+ "_view_module_version": "1.5.0",
440
+ "_view_name": "HTMLView",
441
+ "description": "",
442
+ "description_tooltip": null,
443
+ "layout": "IPY_MODEL_2f519799556b42179cafb4721a8001b3",
444
+ "placeholder": "​",
445
+ "style": "IPY_MODEL_4757adf929fd447eb396f876b69cba6f",
446
+ "value": " 1.47k/1.47k [00:00<00:00, 20.3kB/s]"
447
+ }
448
+ },
449
+ "bd74b18070114aedaa0a4e8a22b4c181": {
450
+ "model_module": "@jupyter-widgets/base",
451
+ "model_name": "LayoutModel",
452
+ "model_module_version": "1.2.0",
453
+ "state": {
454
+ "_model_module": "@jupyter-widgets/base",
455
+ "_model_module_version": "1.2.0",
456
+ "_model_name": "LayoutModel",
457
+ "_view_count": null,
458
+ "_view_module": "@jupyter-widgets/base",
459
+ "_view_module_version": "1.2.0",
460
+ "_view_name": "LayoutView",
461
+ "align_content": null,
462
+ "align_items": null,
463
+ "align_self": null,
464
+ "border": null,
465
+ "bottom": null,
466
+ "display": null,
467
+ "flex": null,
468
+ "flex_flow": null,
469
+ "grid_area": null,
470
+ "grid_auto_columns": null,
471
+ "grid_auto_flow": null,
472
+ "grid_auto_rows": null,
473
+ "grid_column": null,
474
+ "grid_gap": null,
475
+ "grid_row": null,
476
+ "grid_template_areas": null,
477
+ "grid_template_columns": null,
478
+ "grid_template_rows": null,
479
+ "height": null,
480
+ "justify_content": null,
481
+ "justify_items": null,
482
+ "left": null,
483
+ "margin": null,
484
+ "max_height": null,
485
+ "max_width": null,
486
+ "min_height": null,
487
+ "min_width": null,
488
+ "object_fit": null,
489
+ "object_position": null,
490
+ "order": null,
491
+ "overflow": null,
492
+ "overflow_x": null,
493
+ "overflow_y": null,
494
+ "padding": null,
495
+ "right": null,
496
+ "top": null,
497
+ "visibility": null,
498
+ "width": null
499
+ }
500
+ },
501
+ "90fb0a4e62b242a1ba9ef0e9c02d8a70": {
502
+ "model_module": "@jupyter-widgets/base",
503
+ "model_name": "LayoutModel",
504
+ "model_module_version": "1.2.0",
505
+ "state": {
506
+ "_model_module": "@jupyter-widgets/base",
507
+ "_model_module_version": "1.2.0",
508
+ "_model_name": "LayoutModel",
509
+ "_view_count": null,
510
+ "_view_module": "@jupyter-widgets/base",
511
+ "_view_module_version": "1.2.0",
512
+ "_view_name": "LayoutView",
513
+ "align_content": null,
514
+ "align_items": null,
515
+ "align_self": null,
516
+ "border": null,
517
+ "bottom": null,
518
+ "display": null,
519
+ "flex": null,
520
+ "flex_flow": null,
521
+ "grid_area": null,
522
+ "grid_auto_columns": null,
523
+ "grid_auto_flow": null,
524
+ "grid_auto_rows": null,
525
+ "grid_column": null,
526
+ "grid_gap": null,
527
+ "grid_row": null,
528
+ "grid_template_areas": null,
529
+ "grid_template_columns": null,
530
+ "grid_template_rows": null,
531
+ "height": null,
532
+ "justify_content": null,
533
+ "justify_items": null,
534
+ "left": null,
535
+ "margin": null,
536
+ "max_height": null,
537
+ "max_width": null,
538
+ "min_height": null,
539
+ "min_width": null,
540
+ "object_fit": null,
541
+ "object_position": null,
542
+ "order": null,
543
+ "overflow": null,
544
+ "overflow_x": null,
545
+ "overflow_y": null,
546
+ "padding": null,
547
+ "right": null,
548
+ "top": null,
549
+ "visibility": null,
550
+ "width": null
551
+ }
552
+ },
553
+ "1b2af4a15e33491d8ce6833c1f4f42e3": {
554
+ "model_module": "@jupyter-widgets/controls",
555
+ "model_name": "DescriptionStyleModel",
556
+ "model_module_version": "1.5.0",
557
+ "state": {
558
+ "_model_module": "@jupyter-widgets/controls",
559
+ "_model_module_version": "1.5.0",
560
+ "_model_name": "DescriptionStyleModel",
561
+ "_view_count": null,
562
+ "_view_module": "@jupyter-widgets/base",
563
+ "_view_module_version": "1.2.0",
564
+ "_view_name": "StyleView",
565
+ "description_width": ""
566
+ }
567
+ },
568
+ "085d8ad9e0744a1782800c4f8a260db0": {
569
+ "model_module": "@jupyter-widgets/base",
570
+ "model_name": "LayoutModel",
571
+ "model_module_version": "1.2.0",
572
+ "state": {
573
+ "_model_module": "@jupyter-widgets/base",
574
+ "_model_module_version": "1.2.0",
575
+ "_model_name": "LayoutModel",
576
+ "_view_count": null,
577
+ "_view_module": "@jupyter-widgets/base",
578
+ "_view_module_version": "1.2.0",
579
+ "_view_name": "LayoutView",
580
+ "align_content": null,
581
+ "align_items": null,
582
+ "align_self": null,
583
+ "border": null,
584
+ "bottom": null,
585
+ "display": null,
586
+ "flex": null,
587
+ "flex_flow": null,
588
+ "grid_area": null,
589
+ "grid_auto_columns": null,
590
+ "grid_auto_flow": null,
591
+ "grid_auto_rows": null,
592
+ "grid_column": null,
593
+ "grid_gap": null,
594
+ "grid_row": null,
595
+ "grid_template_areas": null,
596
+ "grid_template_columns": null,
597
+ "grid_template_rows": null,
598
+ "height": null,
599
+ "justify_content": null,
600
+ "justify_items": null,
601
+ "left": null,
602
+ "margin": null,
603
+ "max_height": null,
604
+ "max_width": null,
605
+ "min_height": null,
606
+ "min_width": null,
607
+ "object_fit": null,
608
+ "object_position": null,
609
+ "order": null,
610
+ "overflow": null,
611
+ "overflow_x": null,
612
+ "overflow_y": null,
613
+ "padding": null,
614
+ "right": null,
615
+ "top": null,
616
+ "visibility": null,
617
+ "width": null
618
+ }
619
+ },
620
+ "eb18e0481db84258a8a2d90e55c6e4e0": {
621
+ "model_module": "@jupyter-widgets/controls",
622
+ "model_name": "ProgressStyleModel",
623
+ "model_module_version": "1.5.0",
624
+ "state": {
625
+ "_model_module": "@jupyter-widgets/controls",
626
+ "_model_module_version": "1.5.0",
627
+ "_model_name": "ProgressStyleModel",
628
+ "_view_count": null,
629
+ "_view_module": "@jupyter-widgets/base",
630
+ "_view_module_version": "1.2.0",
631
+ "_view_name": "StyleView",
632
+ "bar_color": null,
633
+ "description_width": ""
634
+ }
635
+ },
636
+ "2f519799556b42179cafb4721a8001b3": {
637
+ "model_module": "@jupyter-widgets/base",
638
+ "model_name": "LayoutModel",
639
+ "model_module_version": "1.2.0",
640
+ "state": {
641
+ "_model_module": "@jupyter-widgets/base",
642
+ "_model_module_version": "1.2.0",
643
+ "_model_name": "LayoutModel",
644
+ "_view_count": null,
645
+ "_view_module": "@jupyter-widgets/base",
646
+ "_view_module_version": "1.2.0",
647
+ "_view_name": "LayoutView",
648
+ "align_content": null,
649
+ "align_items": null,
650
+ "align_self": null,
651
+ "border": null,
652
+ "bottom": null,
653
+ "display": null,
654
+ "flex": null,
655
+ "flex_flow": null,
656
+ "grid_area": null,
657
+ "grid_auto_columns": null,
658
+ "grid_auto_flow": null,
659
+ "grid_auto_rows": null,
660
+ "grid_column": null,
661
+ "grid_gap": null,
662
+ "grid_row": null,
663
+ "grid_template_areas": null,
664
+ "grid_template_columns": null,
665
+ "grid_template_rows": null,
666
+ "height": null,
667
+ "justify_content": null,
668
+ "justify_items": null,
669
+ "left": null,
670
+ "margin": null,
671
+ "max_height": null,
672
+ "max_width": null,
673
+ "min_height": null,
674
+ "min_width": null,
675
+ "object_fit": null,
676
+ "object_position": null,
677
+ "order": null,
678
+ "overflow": null,
679
+ "overflow_x": null,
680
+ "overflow_y": null,
681
+ "padding": null,
682
+ "right": null,
683
+ "top": null,
684
+ "visibility": null,
685
+ "width": null
686
+ }
687
+ },
688
+ "4757adf929fd447eb396f876b69cba6f": {
689
+ "model_module": "@jupyter-widgets/controls",
690
+ "model_name": "DescriptionStyleModel",
691
+ "model_module_version": "1.5.0",
692
+ "state": {
693
+ "_model_module": "@jupyter-widgets/controls",
694
+ "_model_module_version": "1.5.0",
695
+ "_model_name": "DescriptionStyleModel",
696
+ "_view_count": null,
697
+ "_view_module": "@jupyter-widgets/base",
698
+ "_view_module_version": "1.2.0",
699
+ "_view_name": "StyleView",
700
+ "description_width": ""
701
+ }
702
+ },
703
+ "132d6749cf2346268ab5eebab6ed8a57": {
704
+ "model_module": "@jupyter-widgets/controls",
705
+ "model_name": "HBoxModel",
706
+ "model_module_version": "1.5.0",
707
+ "state": {
708
+ "_dom_classes": [],
709
+ "_model_module": "@jupyter-widgets/controls",
710
+ "_model_module_version": "1.5.0",
711
+ "_model_name": "HBoxModel",
712
+ "_view_count": null,
713
+ "_view_module": "@jupyter-widgets/controls",
714
+ "_view_module_version": "1.5.0",
715
+ "_view_name": "HBoxView",
716
+ "box_style": "",
717
+ "children": [
718
+ "IPY_MODEL_d5c40ecb2daf45b6a8a6582caa87ab38",
719
+ "IPY_MODEL_71a52e91bfe84ec69773aa7626166435",
720
+ "IPY_MODEL_e90ac08d902a470da7ddf97d287fb8d9"
721
+ ],
722
+ "layout": "IPY_MODEL_87e0466a20fe4e00a5e57360775a69c0"
723
+ }
724
+ },
725
+ "d5c40ecb2daf45b6a8a6582caa87ab38": {
726
+ "model_module": "@jupyter-widgets/controls",
727
+ "model_name": "HTMLModel",
728
+ "model_module_version": "1.5.0",
729
+ "state": {
730
+ "_dom_classes": [],
731
+ "_model_module": "@jupyter-widgets/controls",
732
+ "_model_module_version": "1.5.0",
733
+ "_model_name": "HTMLModel",
734
+ "_view_count": null,
735
+ "_view_module": "@jupyter-widgets/controls",
736
+ "_view_module_version": "1.5.0",
737
+ "_view_name": "HTMLView",
738
+ "description": "",
739
+ "description_tooltip": null,
740
+ "layout": "IPY_MODEL_bd277feb5f014d3d9a34a36edb411837",
741
+ "placeholder": "​",
742
+ "style": "IPY_MODEL_2ba4dad0f68445a89f8c9c005487470b",
743
+ "value": "Downloading pytorch_model.bin: 100%"
744
+ }
745
+ },
746
+ "71a52e91bfe84ec69773aa7626166435": {
747
+ "model_module": "@jupyter-widgets/controls",
748
+ "model_name": "FloatProgressModel",
749
+ "model_module_version": "1.5.0",
750
+ "state": {
751
+ "_dom_classes": [],
752
+ "_model_module": "@jupyter-widgets/controls",
753
+ "_model_module_version": "1.5.0",
754
+ "_model_name": "FloatProgressModel",
755
+ "_view_count": null,
756
+ "_view_module": "@jupyter-widgets/controls",
757
+ "_view_module_version": "1.5.0",
758
+ "_view_name": "ProgressView",
759
+ "bar_style": "success",
760
+ "description": "",
761
+ "description_tooltip": null,
762
+ "layout": "IPY_MODEL_2d065b4d97b9488a88846bc7d6dc80c6",
763
+ "max": 347653887,
764
+ "min": 0,
765
+ "orientation": "horizontal",
766
+ "style": "IPY_MODEL_84105259880b454ba243808f163db44f",
767
+ "value": 347653887
768
+ }
769
+ },
770
+ "e90ac08d902a470da7ddf97d287fb8d9": {
771
+ "model_module": "@jupyter-widgets/controls",
772
+ "model_name": "HTMLModel",
773
+ "model_module_version": "1.5.0",
774
+ "state": {
775
+ "_dom_classes": [],
776
+ "_model_module": "@jupyter-widgets/controls",
777
+ "_model_module_version": "1.5.0",
778
+ "_model_name": "HTMLModel",
779
+ "_view_count": null,
780
+ "_view_module": "@jupyter-widgets/controls",
781
+ "_view_module_version": "1.5.0",
782
+ "_view_name": "HTMLView",
783
+ "description": "",
784
+ "description_tooltip": null,
785
+ "layout": "IPY_MODEL_14f27f5f8de84e69a1d9d875aaa4bc3f",
786
+ "placeholder": "​",
787
+ "style": "IPY_MODEL_e7d65876cb524ecdb5be37c49c2896f6",
788
+ "value": " 348M/348M [00:14<00:00, 43.4MB/s]"
789
+ }
790
+ },
791
+ "87e0466a20fe4e00a5e57360775a69c0": {
792
+ "model_module": "@jupyter-widgets/base",
793
+ "model_name": "LayoutModel",
794
+ "model_module_version": "1.2.0",
795
+ "state": {
796
+ "_model_module": "@jupyter-widgets/base",
797
+ "_model_module_version": "1.2.0",
798
+ "_model_name": "LayoutModel",
799
+ "_view_count": null,
800
+ "_view_module": "@jupyter-widgets/base",
801
+ "_view_module_version": "1.2.0",
802
+ "_view_name": "LayoutView",
803
+ "align_content": null,
804
+ "align_items": null,
805
+ "align_self": null,
806
+ "border": null,
807
+ "bottom": null,
808
+ "display": null,
809
+ "flex": null,
810
+ "flex_flow": null,
811
+ "grid_area": null,
812
+ "grid_auto_columns": null,
813
+ "grid_auto_flow": null,
814
+ "grid_auto_rows": null,
815
+ "grid_column": null,
816
+ "grid_gap": null,
817
+ "grid_row": null,
818
+ "grid_template_areas": null,
819
+ "grid_template_columns": null,
820
+ "grid_template_rows": null,
821
+ "height": null,
822
+ "justify_content": null,
823
+ "justify_items": null,
824
+ "left": null,
825
+ "margin": null,
826
+ "max_height": null,
827
+ "max_width": null,
828
+ "min_height": null,
829
+ "min_width": null,
830
+ "object_fit": null,
831
+ "object_position": null,
832
+ "order": null,
833
+ "overflow": null,
834
+ "overflow_x": null,
835
+ "overflow_y": null,
836
+ "padding": null,
837
+ "right": null,
838
+ "top": null,
839
+ "visibility": null,
840
+ "width": null
841
+ }
842
+ },
843
+ "bd277feb5f014d3d9a34a36edb411837": {
844
+ "model_module": "@jupyter-widgets/base",
845
+ "model_name": "LayoutModel",
846
+ "model_module_version": "1.2.0",
847
+ "state": {
848
+ "_model_module": "@jupyter-widgets/base",
849
+ "_model_module_version": "1.2.0",
850
+ "_model_name": "LayoutModel",
851
+ "_view_count": null,
852
+ "_view_module": "@jupyter-widgets/base",
853
+ "_view_module_version": "1.2.0",
854
+ "_view_name": "LayoutView",
855
+ "align_content": null,
856
+ "align_items": null,
857
+ "align_self": null,
858
+ "border": null,
859
+ "bottom": null,
860
+ "display": null,
861
+ "flex": null,
862
+ "flex_flow": null,
863
+ "grid_area": null,
864
+ "grid_auto_columns": null,
865
+ "grid_auto_flow": null,
866
+ "grid_auto_rows": null,
867
+ "grid_column": null,
868
+ "grid_gap": null,
869
+ "grid_row": null,
870
+ "grid_template_areas": null,
871
+ "grid_template_columns": null,
872
+ "grid_template_rows": null,
873
+ "height": null,
874
+ "justify_content": null,
875
+ "justify_items": null,
876
+ "left": null,
877
+ "margin": null,
878
+ "max_height": null,
879
+ "max_width": null,
880
+ "min_height": null,
881
+ "min_width": null,
882
+ "object_fit": null,
883
+ "object_position": null,
884
+ "order": null,
885
+ "overflow": null,
886
+ "overflow_x": null,
887
+ "overflow_y": null,
888
+ "padding": null,
889
+ "right": null,
890
+ "top": null,
891
+ "visibility": null,
892
+ "width": null
893
+ }
894
+ },
895
+ "2ba4dad0f68445a89f8c9c005487470b": {
896
+ "model_module": "@jupyter-widgets/controls",
897
+ "model_name": "DescriptionStyleModel",
898
+ "model_module_version": "1.5.0",
899
+ "state": {
900
+ "_model_module": "@jupyter-widgets/controls",
901
+ "_model_module_version": "1.5.0",
902
+ "_model_name": "DescriptionStyleModel",
903
+ "_view_count": null,
904
+ "_view_module": "@jupyter-widgets/base",
905
+ "_view_module_version": "1.2.0",
906
+ "_view_name": "StyleView",
907
+ "description_width": ""
908
+ }
909
+ },
910
+ "2d065b4d97b9488a88846bc7d6dc80c6": {
911
+ "model_module": "@jupyter-widgets/base",
912
+ "model_name": "LayoutModel",
913
+ "model_module_version": "1.2.0",
914
+ "state": {
915
+ "_model_module": "@jupyter-widgets/base",
916
+ "_model_module_version": "1.2.0",
917
+ "_model_name": "LayoutModel",
918
+ "_view_count": null,
919
+ "_view_module": "@jupyter-widgets/base",
920
+ "_view_module_version": "1.2.0",
921
+ "_view_name": "LayoutView",
922
+ "align_content": null,
923
+ "align_items": null,
924
+ "align_self": null,
925
+ "border": null,
926
+ "bottom": null,
927
+ "display": null,
928
+ "flex": null,
929
+ "flex_flow": null,
930
+ "grid_area": null,
931
+ "grid_auto_columns": null,
932
+ "grid_auto_flow": null,
933
+ "grid_auto_rows": null,
934
+ "grid_column": null,
935
+ "grid_gap": null,
936
+ "grid_row": null,
937
+ "grid_template_areas": null,
938
+ "grid_template_columns": null,
939
+ "grid_template_rows": null,
940
+ "height": null,
941
+ "justify_content": null,
942
+ "justify_items": null,
943
+ "left": null,
944
+ "margin": null,
945
+ "max_height": null,
946
+ "max_width": null,
947
+ "min_height": null,
948
+ "min_width": null,
949
+ "object_fit": null,
950
+ "object_position": null,
951
+ "order": null,
952
+ "overflow": null,
953
+ "overflow_x": null,
954
+ "overflow_y": null,
955
+ "padding": null,
956
+ "right": null,
957
+ "top": null,
958
+ "visibility": null,
959
+ "width": null
960
+ }
961
+ },
962
+ "84105259880b454ba243808f163db44f": {
963
+ "model_module": "@jupyter-widgets/controls",
964
+ "model_name": "ProgressStyleModel",
965
+ "model_module_version": "1.5.0",
966
+ "state": {
967
+ "_model_module": "@jupyter-widgets/controls",
968
+ "_model_module_version": "1.5.0",
969
+ "_model_name": "ProgressStyleModel",
970
+ "_view_count": null,
971
+ "_view_module": "@jupyter-widgets/base",
972
+ "_view_module_version": "1.2.0",
973
+ "_view_name": "StyleView",
974
+ "bar_color": null,
975
+ "description_width": ""
976
+ }
977
+ },
978
+ "14f27f5f8de84e69a1d9d875aaa4bc3f": {
979
+ "model_module": "@jupyter-widgets/base",
980
+ "model_name": "LayoutModel",
981
+ "model_module_version": "1.2.0",
982
+ "state": {
983
+ "_model_module": "@jupyter-widgets/base",
984
+ "_model_module_version": "1.2.0",
985
+ "_model_name": "LayoutModel",
986
+ "_view_count": null,
987
+ "_view_module": "@jupyter-widgets/base",
988
+ "_view_module_version": "1.2.0",
989
+ "_view_name": "LayoutView",
990
+ "align_content": null,
991
+ "align_items": null,
992
+ "align_self": null,
993
+ "border": null,
994
+ "bottom": null,
995
+ "display": null,
996
+ "flex": null,
997
+ "flex_flow": null,
998
+ "grid_area": null,
999
+ "grid_auto_columns": null,
1000
+ "grid_auto_flow": null,
1001
+ "grid_auto_rows": null,
1002
+ "grid_column": null,
1003
+ "grid_gap": null,
1004
+ "grid_row": null,
1005
+ "grid_template_areas": null,
1006
+ "grid_template_columns": null,
1007
+ "grid_template_rows": null,
1008
+ "height": null,
1009
+ "justify_content": null,
1010
+ "justify_items": null,
1011
+ "left": null,
1012
+ "margin": null,
1013
+ "max_height": null,
1014
+ "max_width": null,
1015
+ "min_height": null,
1016
+ "min_width": null,
1017
+ "object_fit": null,
1018
+ "object_position": null,
1019
+ "order": null,
1020
+ "overflow": null,
1021
+ "overflow_x": null,
1022
+ "overflow_y": null,
1023
+ "padding": null,
1024
+ "right": null,
1025
+ "top": null,
1026
+ "visibility": null,
1027
+ "width": null
1028
+ }
1029
+ },
1030
+ "e7d65876cb524ecdb5be37c49c2896f6": {
1031
+ "model_module": "@jupyter-widgets/controls",
1032
+ "model_name": "DescriptionStyleModel",
1033
+ "model_module_version": "1.5.0",
1034
+ "state": {
1035
+ "_model_module": "@jupyter-widgets/controls",
1036
+ "_model_module_version": "1.5.0",
1037
+ "_model_name": "DescriptionStyleModel",
1038
+ "_view_count": null,
1039
+ "_view_module": "@jupyter-widgets/base",
1040
+ "_view_module_version": "1.2.0",
1041
+ "_view_name": "StyleView",
1042
+ "description_width": ""
1043
+ }
1044
+ }
1045
+ }
1046
+ }
1047
+ },
1048
+ "cells": [
1049
+ {
1050
+ "cell_type": "code",
1051
+ "execution_count": 4,
1052
+ "metadata": {
1053
+ "colab": {
1054
+ "base_uri": "https://localhost:8080/"
1055
+ },
1056
+ "id": "DmYX0sZUMMUr",
1057
+ "outputId": "8de3016f-e109-4010-8280-9af17e7e9c5d"
1058
+ },
1059
+ "outputs": [
1060
+ {
1061
+ "output_type": "stream",
1062
+ "name": "stdout",
1063
+ "text": [
1064
+ "Requirement already satisfied: torchvision in /usr/local/lib/python3.10/dist-packages (0.15.2+cu118)\n",
1065
+ "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from torchvision) (1.22.4)\n",
1066
+ "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from torchvision) (2.27.1)\n",
1067
+ "Requirement already satisfied: torch==2.0.1 in /usr/local/lib/python3.10/dist-packages (from torchvision) (2.0.1+cu118)\n",
1068
+ "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision) (8.4.0)\n",
1069
+ "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch==2.0.1->torchvision) (3.12.2)\n",
1070
+ "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch==2.0.1->torchvision) (4.6.3)\n",
1071
+ "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch==2.0.1->torchvision) (1.11.1)\n",
1072
+ "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch==2.0.1->torchvision) (3.1)\n",
1073
+ "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch==2.0.1->torchvision) (3.1.2)\n",
1074
+ "Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch==2.0.1->torchvision) (2.0.0)\n",
1075
+ "Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch==2.0.1->torchvision) (3.25.2)\n",
1076
+ "Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch==2.0.1->torchvision) (16.0.6)\n",
1077
+ "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision) (1.26.16)\n",
1078
+ "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision) (2023.5.7)\n",
1079
+ "Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision) (2.0.12)\n",
1080
+ "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision) (3.4)\n",
1081
+ "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch==2.0.1->torchvision) (2.1.3)\n",
1082
+ "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch==2.0.1->torchvision) (1.3.0)\n"
1083
+ ]
1084
+ }
1085
+ ],
1086
+ "source": [
1087
+ "pip install torchvision"
1088
+ ]
1089
+ },
1090
+ {
1091
+ "cell_type": "code",
1092
+ "source": [
1093
+ "pip install torch"
1094
+ ],
1095
+ "metadata": {
1096
+ "colab": {
1097
+ "base_uri": "https://localhost:8080/"
1098
+ },
1099
+ "id": "K3E2HTMtMRg3",
1100
+ "outputId": "1e90d3f4-6a10-411d-986f-6927fff35861"
1101
+ },
1102
+ "execution_count": 3,
1103
+ "outputs": [
1104
+ {
1105
+ "output_type": "stream",
1106
+ "name": "stdout",
1107
+ "text": [
1108
+ "Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (2.0.1+cu118)\n",
1109
+ "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch) (3.12.2)\n",
1110
+ "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch) (4.6.3)\n",
1111
+ "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch) (1.11.1)\n",
1112
+ "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch) (3.1)\n",
1113
+ "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch) (3.1.2)\n",
1114
+ "Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch) (2.0.0)\n",
1115
+ "Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch) (3.25.2)\n",
1116
+ "Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch) (16.0.6)\n",
1117
+ "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch) (2.1.3)\n",
1118
+ "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch) (1.3.0)\n"
1119
+ ]
1120
+ }
1121
+ ]
1122
+ },
1123
+ {
1124
+ "cell_type": "code",
1125
+ "source": [
1126
+ "pip install transformers"
1127
+ ],
1128
+ "metadata": {
1129
+ "colab": {
1130
+ "base_uri": "https://localhost:8080/"
1131
+ },
1132
+ "id": "DjvW2Wj7NNtw",
1133
+ "outputId": "4ac46ae5-8ebd-483a-f981-7b5d452444aa"
1134
+ },
1135
+ "execution_count": 6,
1136
+ "outputs": [
1137
+ {
1138
+ "output_type": "stream",
1139
+ "name": "stdout",
1140
+ "text": [
1141
+ "Collecting transformers\n",
1142
+ " Downloading transformers-4.30.2-py3-none-any.whl (7.2 MB)\n",
1143
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.2/7.2 MB\u001b[0m \u001b[31m91.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
1144
+ "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.12.2)\n",
1145
+ "Collecting huggingface-hub<1.0,>=0.14.1 (from transformers)\n",
1146
+ " Downloading huggingface_hub-0.15.1-py3-none-any.whl (236 kB)\n",
1147
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m236.8/236.8 kB\u001b[0m \u001b[31m28.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
1148
+ "\u001b[?25hRequirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (1.22.4)\n",
1149
+ "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (23.1)\n",
1150
+ "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0)\n",
1151
+ "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2022.10.31)\n",
1152
+ "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.27.1)\n",
1153
+ "Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers)\n",
1154
+ " Downloading tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n",
1155
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m110.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
1156
+ "\u001b[?25hCollecting safetensors>=0.3.1 (from transformers)\n",
1157
+ " Downloading safetensors-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
1158
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m87.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
1159
+ "\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers) (4.65.0)\n",
1160
+ "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers) (2023.6.0)\n",
1161
+ "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers) (4.6.3)\n",
1162
+ "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (1.26.16)\n",
1163
+ "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2023.5.7)\n",
1164
+ "Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2.0.12)\n",
1165
+ "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.4)\n",
1166
+ "Installing collected packages: tokenizers, safetensors, huggingface-hub, transformers\n",
1167
+ "Successfully installed huggingface-hub-0.15.1 safetensors-0.3.1 tokenizers-0.13.3 transformers-4.30.2\n"
1168
+ ]
1169
+ }
1170
+ ]
1171
+ },
1172
+ {
1173
+ "cell_type": "code",
1174
+ "source": [
1175
+ "pip install onnxruntime"
1176
+ ],
1177
+ "metadata": {
1178
+ "colab": {
1179
+ "base_uri": "https://localhost:8080/"
1180
+ },
1181
+ "id": "NLYklBuhO48q",
1182
+ "outputId": "15ab1edb-99c9-48bf-a41f-8b7ee052609d"
1183
+ },
1184
+ "execution_count": 12,
1185
+ "outputs": [
1186
+ {
1187
+ "output_type": "stream",
1188
+ "name": "stdout",
1189
+ "text": [
1190
+ "Collecting onnxruntime\n",
1191
+ " Downloading onnxruntime-1.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB)\n",
1192
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.9/5.9 MB\u001b[0m \u001b[31m68.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
1193
+ "\u001b[?25hCollecting coloredlogs (from onnxruntime)\n",
1194
+ " Downloading coloredlogs-15.0.1-py2.py3-none-any.whl (46 kB)\n",
1195
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m3.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
1196
+ "\u001b[?25hRequirement already satisfied: flatbuffers in /usr/local/lib/python3.10/dist-packages (from onnxruntime) (23.5.26)\n",
1197
+ "Requirement already satisfied: numpy>=1.21.6 in /usr/local/lib/python3.10/dist-packages (from onnxruntime) (1.22.4)\n",
1198
+ "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from onnxruntime) (23.1)\n",
1199
+ "Requirement already satisfied: protobuf in /usr/local/lib/python3.10/dist-packages (from onnxruntime) (3.20.3)\n",
1200
+ "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from onnxruntime) (1.11.1)\n",
1201
+ "Collecting humanfriendly>=9.1 (from coloredlogs->onnxruntime)\n",
1202
+ " Downloading humanfriendly-10.0-py2.py3-none-any.whl (86 kB)\n",
1203
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m11.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
1204
+ "\u001b[?25hRequirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->onnxruntime) (1.3.0)\n",
1205
+ "Installing collected packages: humanfriendly, coloredlogs, onnxruntime\n",
1206
+ "Successfully installed coloredlogs-15.0.1 humanfriendly-10.0 onnxruntime-1.15.1\n"
1207
+ ]
1208
+ }
1209
+ ]
1210
+ },
1211
+ {
1212
+ "cell_type": "code",
1213
+ "source": [
1214
+ "pip install onnx"
1215
+ ],
1216
+ "metadata": {
1217
+ "colab": {
1218
+ "base_uri": "https://localhost:8080/"
1219
+ },
1220
+ "id": "i9Lvf_fHOFby",
1221
+ "outputId": "b3627fc2-458f-43e2-98d8-f9634f83c952"
1222
+ },
1223
+ "execution_count": 9,
1224
+ "outputs": [
1225
+ {
1226
+ "output_type": "stream",
1227
+ "name": "stdout",
1228
+ "text": [
1229
+ "Collecting onnx\n",
1230
+ " Downloading onnx-1.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.6 MB)\n",
1231
+ "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/14.6 MB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.0/14.6 MB\u001b[0m \u001b[31m37.2 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.2/14.6 MB\u001b[0m \u001b[31m88.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━\u001b[0m \u001b[32m11.2/14.6 MB\u001b[0m \u001b[31m131.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m14.6/14.6 MB\u001b[0m \u001b[31m145.8 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m14.6/14.6 MB\u001b[0m \u001b[31m145.8 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m14.6/14.6 MB\u001b[0m \u001b[31m145.8 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m14.6/14.6 MB\u001b[0m \u001b[31m62.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
1232
+ "\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from onnx) (1.22.4)\n",
1233
+ "Requirement already satisfied: protobuf>=3.20.2 in /usr/local/lib/python3.10/dist-packages (from onnx) (3.20.3)\n",
1234
+ "Requirement already satisfied: typing-extensions>=3.6.2.1 in /usr/local/lib/python3.10/dist-packages (from onnx) (4.6.3)\n",
1235
+ "Installing collected packages: onnx\n",
1236
+ "Successfully installed onnx-1.14.0\n"
1237
+ ]
1238
+ }
1239
+ ]
1240
+ },
1241
+ {
1242
+ "cell_type": "code",
1243
+ "source": [
1244
+ "from transformers import AutoFeatureExtractor, AutoModelForImageClassification\n",
1245
+ "\n",
1246
+ "extractor = AutoFeatureExtractor.from_pretrained(\"Nekshay/SWIN_Angle_Detection_Car\")\n",
1247
+ "\n",
1248
+ "model = AutoModelForImageClassification.from_pretrained(\"Nekshay/SWIN_Angle_Detection_Car\")"
1249
+ ],
1250
+ "metadata": {
1251
+ "colab": {
1252
+ "base_uri": "https://localhost:8080/",
1253
+ "height": 168,
1254
+ "referenced_widgets": [
1255
+ "58533d8fb59449359914fe9f384d7623",
1256
+ "c0d3b5a444614ce5a2a53132cd38ecf7",
1257
+ "7080ae74b8314eecb4bca56a6d874074",
1258
+ "4b93501f67a54b088ed1ba2fb05af3f5",
1259
+ "a9a1867e5ec2418da340ca72165e8ccf",
1260
+ "0dc1167df3094a47b443b090d2423f77",
1261
+ "0b719479d1be4375b222943be38fbe8c",
1262
+ "f563cfc830374a64830bd966c99b36b6",
1263
+ "220fe2a0503346a1bb8ae1832a85cfb0",
1264
+ "e4426b319cfb4dbea1073c0aa27da6da",
1265
+ "120e83bb6f86425f9a67ddf816ee812a",
1266
+ "b5d50e4527b148c89b8039c3c73028d1",
1267
+ "5029579d27b14d5eba2df29b60ca062c",
1268
+ "167c4b3bd9724a11abc4ff4345b0e800",
1269
+ "b4c5c4f4f72545678722c2707b06e459",
1270
+ "bd74b18070114aedaa0a4e8a22b4c181",
1271
+ "90fb0a4e62b242a1ba9ef0e9c02d8a70",
1272
+ "1b2af4a15e33491d8ce6833c1f4f42e3",
1273
+ "085d8ad9e0744a1782800c4f8a260db0",
1274
+ "eb18e0481db84258a8a2d90e55c6e4e0",
1275
+ "2f519799556b42179cafb4721a8001b3",
1276
+ "4757adf929fd447eb396f876b69cba6f",
1277
+ "132d6749cf2346268ab5eebab6ed8a57",
1278
+ "d5c40ecb2daf45b6a8a6582caa87ab38",
1279
+ "71a52e91bfe84ec69773aa7626166435",
1280
+ "e90ac08d902a470da7ddf97d287fb8d9",
1281
+ "87e0466a20fe4e00a5e57360775a69c0",
1282
+ "bd277feb5f014d3d9a34a36edb411837",
1283
+ "2ba4dad0f68445a89f8c9c005487470b",
1284
+ "2d065b4d97b9488a88846bc7d6dc80c6",
1285
+ "84105259880b454ba243808f163db44f",
1286
+ "14f27f5f8de84e69a1d9d875aaa4bc3f",
1287
+ "e7d65876cb524ecdb5be37c49c2896f6"
1288
+ ]
1289
+ },
1290
+ "id": "TxykjJjfNQjP",
1291
+ "outputId": "2d7ddfb3-baa3-4849-a7eb-612ff992ab22"
1292
+ },
1293
+ "execution_count": 7,
1294
+ "outputs": [
1295
+ {
1296
+ "output_type": "display_data",
1297
+ "data": {
1298
+ "text/plain": [
1299
+ "Downloading (…)rocessor_config.json: 0%| | 0.00/240 [00:00<?, ?B/s]"
1300
+ ],
1301
+ "application/vnd.jupyter.widget-view+json": {
1302
+ "version_major": 2,
1303
+ "version_minor": 0,
1304
+ "model_id": "58533d8fb59449359914fe9f384d7623"
1305
+ }
1306
+ },
1307
+ "metadata": {}
1308
+ },
1309
+ {
1310
+ "output_type": "stream",
1311
+ "name": "stderr",
1312
+ "text": [
1313
+ "/usr/local/lib/python3.10/dist-packages/transformers/models/vit/feature_extraction_vit.py:28: FutureWarning: The class ViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please use ViTImageProcessor instead.\n",
1314
+ " warnings.warn(\n"
1315
+ ]
1316
+ },
1317
+ {
1318
+ "output_type": "display_data",
1319
+ "data": {
1320
+ "text/plain": [
1321
+ "Downloading (…)lve/main/config.json: 0%| | 0.00/1.47k [00:00<?, ?B/s]"
1322
+ ],
1323
+ "application/vnd.jupyter.widget-view+json": {
1324
+ "version_major": 2,
1325
+ "version_minor": 0,
1326
+ "model_id": "b5d50e4527b148c89b8039c3c73028d1"
1327
+ }
1328
+ },
1329
+ "metadata": {}
1330
+ },
1331
+ {
1332
+ "output_type": "display_data",
1333
+ "data": {
1334
+ "text/plain": [
1335
+ "Downloading pytorch_model.bin: 0%| | 0.00/348M [00:00<?, ?B/s]"
1336
+ ],
1337
+ "application/vnd.jupyter.widget-view+json": {
1338
+ "version_major": 2,
1339
+ "version_minor": 0,
1340
+ "model_id": "132d6749cf2346268ab5eebab6ed8a57"
1341
+ }
1342
+ },
1343
+ "metadata": {}
1344
+ }
1345
+ ]
1346
+ },
1347
+ {
1348
+ "cell_type": "code",
1349
+ "source": [
1350
+ "model.save_pretrained('AngleDetection_carvana_SWIN')"
1351
+ ],
1352
+ "metadata": {
1353
+ "id": "4aUJNXYBNhYa"
1354
+ },
1355
+ "execution_count": 8,
1356
+ "outputs": []
1357
+ },
1358
+ {
1359
+ "cell_type": "code",
1360
+ "source": [
1361
+ "!wget https://huggingface.co/Nekshay/Car_VS_Rest/blob/main/model.onnx"
1362
+ ],
1363
+ "metadata": {
1364
+ "colab": {
1365
+ "base_uri": "https://localhost:8080/"
1366
+ },
1367
+ "id": "gFcHopsoOln_",
1368
+ "outputId": "3907bafb-cf74-4f53-81db-761b1093cbf3"
1369
+ },
1370
+ "execution_count": 10,
1371
+ "outputs": [
1372
+ {
1373
+ "output_type": "stream",
1374
+ "name": "stdout",
1375
+ "text": [
1376
+ "--2023-07-04 09:27:29-- https://huggingface.co/Nekshay/Car_VS_Rest/blob/main/model.onnx\n",
1377
+ "Resolving huggingface.co (huggingface.co)... 65.9.86.71, 65.9.86.79, 65.9.86.62, ...\n",
1378
+ "Connecting to huggingface.co (huggingface.co)|65.9.86.71|:443... connected.\n",
1379
+ "HTTP request sent, awaiting response... 200 OK\n",
1380
+ "Length: 51774 (51K) [text/html]\n",
1381
+ "Saving to: ‘model.onnx’\n",
1382
+ "\n",
1383
+ "\rmodel.onnx 0%[ ] 0 --.-KB/s \rmodel.onnx 100%[===================>] 50.56K --.-KB/s in 0.004s \n",
1384
+ "\n",
1385
+ "2023-07-04 09:27:29 (12.5 MB/s) - ‘model.onnx’ saved [51774/51774]\n",
1386
+ "\n"
1387
+ ]
1388
+ }
1389
+ ]
1390
+ },
1391
+ {
1392
+ "cell_type": "code",
1393
+ "source": [],
1394
+ "metadata": {
1395
+ "colab": {
1396
+ "base_uri": "https://localhost:8080/",
1397
+ "height": 356
1398
+ },
1399
+ "id": "GIL02eRuMa00",
1400
+ "outputId": "cf3ef75e-de43-4951-f860-613b21e92de0"
1401
+ },
1402
+ "execution_count": 14,
1403
+ "outputs": [
1404
+ {
1405
+ "output_type": "error",
1406
+ "ename": "TypeError",
1407
+ "evalue": "ignored",
1408
+ "traceback": [
1409
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
1410
+ "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
1411
+ "\u001b[0;32m<ipython-input-14-73aae8c4254a>\u001b[0m in \u001b[0;36m<cell line: 24>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[0;31m# Create an instance of your custom SWIN model\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 24\u001b[0;31m \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mCustomSwinModel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 25\u001b[0m \u001b[0;31m# Step 2: Load the custom SWIN model\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[0;31m#model = YourCustomSwinModel() # Replace with your custom SWIN model implementation\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
1412
+ "\u001b[0;32m<ipython-input-14-73aae8c4254a>\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mConv2d\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m64\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstride\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpadding\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mswin_block\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m...\u001b[0m \u001b[0;31m# Custom SWIN block(s)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 15\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mLinear\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m...\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 16\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
1413
+ "\u001b[0;31mTypeError\u001b[0m: Linear.__init__() missing 1 required positional argument: 'out_features'"
1414
+ ]
1415
+ }
1416
+ ]
1417
+ },
1418
+ {
1419
+ "cell_type": "code",
1420
+ "source": [],
1421
+ "metadata": {
1422
+ "colab": {
1423
+ "base_uri": "https://localhost:8080/",
1424
+ "height": 435
1425
+ },
1426
+ "id": "gsBdI8hgOsIo",
1427
+ "outputId": "a2219f1f-3c88-4498-e6ac-28e495827fe6"
1428
+ },
1429
+ "execution_count": 13,
1430
+ "outputs": [
1431
+ {
1432
+ "output_type": "stream",
1433
+ "name": "stderr",
1434
+ "text": [
1435
+ "/usr/local/lib/python3.10/dist-packages/onnx/__init__.py:143: RuntimeWarning: Unexpected end-group tag: Not all data was converted\n",
1436
+ " decoded = typing.cast(Optional[int], proto.ParseFromString(s))\n"
1437
+ ]
1438
+ },
1439
+ {
1440
+ "output_type": "error",
1441
+ "ename": "DecodeError",
1442
+ "evalue": "ignored",
1443
+ "traceback": [
1444
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
1445
+ "\u001b[0;31mDecodeError\u001b[0m Traceback (most recent call last)",
1446
+ "\u001b[0;32m<ipython-input-13-62496424bd0b>\u001b[0m in \u001b[0;36m<cell line: 9>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;31m# Step 2: Load the ONNX model\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0monnx_model\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0monnx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"/content/model.onnx\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# Replace with the path to your ONNX model\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;31m# Step 3: Create an ONNX Runtime session\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
1447
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/onnx/__init__.py\u001b[0m in \u001b[0;36mload_model\u001b[0;34m(f, format, load_external_data)\u001b[0m\n\u001b[1;32m 168\u001b[0m \"\"\"\n\u001b[1;32m 169\u001b[0m \u001b[0ms\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_load_bytes\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 170\u001b[0;31m \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_model_from_string\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mformat\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 171\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 172\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mload_external_data\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
1448
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/onnx/__init__.py\u001b[0m in \u001b[0;36mload_model_from_string\u001b[0;34m(***failed resolving arguments***)\u001b[0m\n\u001b[1;32m 210\u001b[0m \"\"\"\n\u001b[1;32m 211\u001b[0m \u001b[0;32mdel\u001b[0m \u001b[0mformat\u001b[0m \u001b[0;31m# Unused\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 212\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_deserialize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mModelProto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 213\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 214\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
1449
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/onnx/__init__.py\u001b[0m in \u001b[0;36m_deserialize\u001b[0;34m(s, proto)\u001b[0m\n\u001b[1;32m 143\u001b[0m \u001b[0mdecoded\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtyping\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcast\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mproto\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mParseFromString\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 144\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdecoded\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mdecoded\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 145\u001b[0;31m raise google.protobuf.message.DecodeError(\n\u001b[0m\u001b[1;32m 146\u001b[0m \u001b[0;34mf\"Protobuf decoding consumed too few bytes: {decoded} out of {len(s)}\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 147\u001b[0m )\n",
1450
+ "\u001b[0;31mDecodeError\u001b[0m: Protobuf decoding consumed too few bytes: 1 out of 51774"
1451
+ ]
1452
+ }
1453
+ ]
1454
+ },
1455
+ {
1456
+ "cell_type": "code",
1457
+ "source": [
1458
+ "import torch\n",
1459
+ "from transformers import SwinForImageClassification\n",
1460
+ "import onnx\n",
1461
+ "import onnxruntime\n",
1462
+ "import numpy as np\n",
1463
+ "\n",
1464
+ "# Step 1: Install necessary dependencies\n",
1465
+ "# Ensure Transformers, ONNX, and ONNX Runtime are installed\n",
1466
+ "\n",
1467
+ "# Step 2: Load the pre-trained SWIN base model\n",
1468
+ "model = SwinForImageClassification.from_pretrained(\"Nekshay/SWIN_Angle_Detection_Car\") # Load pre-trained model\n",
1469
+ "\n",
1470
+ "# Step 3: Convert the model to ONNX format\n",
1471
+ "input_size = (3, 224, 224) # Example input size, adjust according to your model\n",
1472
+ "dummy_input = torch.randn(1, *input_size) # Create a dummy input tensor\n",
1473
+ "onnx_filename = \"swin_model.onnx\" # Output ONNX filename\n",
1474
+ "\n",
1475
+ "torch.onnx.export(model, dummy_input, onnx_filename, opset_version=11)\n",
1476
+ "\n",
1477
+ "# Step 4: Create an ONNX Runtime session\n",
1478
+ "session = onnxruntime.InferenceSession(onnx_filename)\n",
1479
+ "\n",
1480
+ "# Step 5: Prepare the input data\n",
1481
+ "input_name = session.get_inputs()[0].name\n",
1482
+ "output_name = session.get_outputs()[0].name\n",
1483
+ "dummy_input = np.random.randn(1, *input_size).astype(np.float32) # Create a dummy input\n",
1484
+ "\n",
1485
+ "# Step 6: Perform inference\n",
1486
+ "output = session.run([output_name], {input_name: dummy_input})\n",
1487
+ "\n",
1488
+ "# Process the output as required\n"
1489
+ ],
1490
+ "metadata": {
1491
+ "colab": {
1492
+ "base_uri": "https://localhost:8080/"
1493
+ },
1494
+ "id": "RvrKYmjEO1HI",
1495
+ "outputId": "2aa9bfc2-51ac-4075-ed09-a1f8e1af673c"
1496
+ },
1497
+ "execution_count": 17,
1498
+ "outputs": [
1499
+ {
1500
+ "output_type": "stream",
1501
+ "name": "stderr",
1502
+ "text": [
1503
+ "/usr/local/lib/python3.10/dist-packages/transformers/models/swin/modeling_swin.py:314: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
1504
+ " if num_channels != self.num_channels:\n",
1505
+ "/usr/local/lib/python3.10/dist-packages/transformers/models/swin/modeling_swin.py:304: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
1506
+ " if width % self.patch_size[1] != 0:\n",
1507
+ "/usr/local/lib/python3.10/dist-packages/transformers/models/swin/modeling_swin.py:307: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
1508
+ " if height % self.patch_size[0] != 0:\n",
1509
+ "/usr/local/lib/python3.10/dist-packages/transformers/models/swin/modeling_swin.py:611: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
1510
+ " if min(input_resolution) <= self.window_size:\n",
1511
+ "/usr/local/lib/python3.10/dist-packages/transformers/models/swin/modeling_swin.py:703: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
1512
+ " was_padded = pad_values[3] > 0 or pad_values[5] > 0\n",
1513
+ "/usr/local/lib/python3.10/dist-packages/transformers/models/swin/modeling_swin.py:704: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
1514
+ " if was_padded:\n",
1515
+ "/usr/local/lib/python3.10/dist-packages/transformers/models/swin/modeling_swin.py:349: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
1516
+ " should_pad = (height % 2 == 1) or (width % 2 == 1)\n",
1517
+ "/usr/local/lib/python3.10/dist-packages/transformers/models/swin/modeling_swin.py:350: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
1518
+ " if should_pad:\n",
1519
+ "/usr/local/lib/python3.10/dist-packages/transformers/models/swin/modeling_swin.py:614: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
1520
+ " self.window_size = min(input_resolution)\n"
1521
+ ]
1522
+ },
1523
+ {
1524
+ "output_type": "stream",
1525
+ "name": "stdout",
1526
+ "text": [
1527
+ "============= Diagnostic Run torch.onnx.export version 2.0.1+cu118 =============\n",
1528
+ "verbose: False, log level: Level.ERROR\n",
1529
+ "======================= 0 NONE 0 NOTE 0 WARNING 0 ERROR ========================\n",
1530
+ "\n"
1531
+ ]
1532
+ }
1533
+ ]
1534
+ },
1535
+ {
1536
+ "cell_type": "code",
1537
+ "source": [],
1538
+ "metadata": {
1539
+ "colab": {
1540
+ "base_uri": "https://localhost:8080/"
1541
+ },
1542
+ "id": "MQjA6FRBQpMn",
1543
+ "outputId": "aac305e3-423d-4675-9123-c53e2a2f2a59"
1544
+ },
1545
+ "execution_count": 18,
1546
+ "outputs": [
1547
+ {
1548
+ "output_type": "execute_result",
1549
+ "data": {
1550
+ "text/plain": [
1551
+ "[array([[ 0.15227151, 0.21316442, 0.07631967, 0.28868374, 0.01127107,\n",
1552
+ " 0.18012685, 0.27240598, -0.13246158, -0.14007984, -0.00418442,\n",
1553
+ " 0.35363495, -0.14376894, 0.21728903, 0.07130641, -0.22561494,\n",
1554
+ " -0.2501627 ]], dtype=float32)]"
1555
+ ]
1556
+ },
1557
+ "metadata": {},
1558
+ "execution_count": 18
1559
+ }
1560
+ ]
1561
+ },
1562
+ {
1563
+ "cell_type": "code",
1564
+ "source": [
1565
+ "pip install pillow\n"
1566
+ ],
1567
+ "metadata": {
1568
+ "colab": {
1569
+ "base_uri": "https://localhost:8080/"
1570
+ },
1571
+ "id": "2KgyPskmVtuP",
1572
+ "outputId": "174695e2-d69b-4fba-d44f-fcfcbf360238"
1573
+ },
1574
+ "execution_count": 21,
1575
+ "outputs": [
1576
+ {
1577
+ "output_type": "stream",
1578
+ "name": "stdout",
1579
+ "text": [
1580
+ "Requirement already satisfied: pillow in /usr/local/lib/python3.10/dist-packages (8.4.0)\n"
1581
+ ]
1582
+ }
1583
+ ]
1584
+ },
1585
+ {
1586
+ "cell_type": "code",
1587
+ "source": [
1588
+ "from PIL import Image"
1589
+ ],
1590
+ "metadata": {
1591
+ "id": "Y4XRBNZtV8KM"
1592
+ },
1593
+ "execution_count": 22,
1594
+ "outputs": []
1595
+ },
1596
+ {
1597
+ "cell_type": "code",
1598
+ "source": [
1599
+ "input_size = (3, 224, 224) # Example input size, adjust according to your model\n",
1600
+ "image_path = \"t.jpg\" # Replace with the path to your image\n",
1601
+ "image = Image.open(image_path).convert(\"RGB\") # Open and convert the image to RGB\n",
1602
+ "image = image.resize((input_size[2], input_size[1])) # Resize the image\n",
1603
+ "image = np.array(image) # Convert the image to a NumPy array\n",
1604
+ "image = image.transpose((2, 0, 1)) # Transpose the image dimensions to match the model's input\n",
1605
+ "image = image / 255.0 # Normalize the pixel values to [0, 1]\n",
1606
+ "image = np.expand_dims(image, axis=0).astype(np.float32) # Add batch dimension and convert to float32\n",
1607
+ "\n",
1608
+ "# Step 4: Create an ONNX Runtime session\n",
1609
+ "onnx_filename = \"swin_model.onnx\" # Path to the converted ONNX model\n",
1610
+ "session = onnxruntime.InferenceSession(onnx_filename)\n",
1611
+ "\n",
1612
+ "# Step 5: Perform inference\n",
1613
+ "input_name = session.get_inputs()[0].name\n",
1614
+ "output_name = session.get_outputs()[0].name\n",
1615
+ "output = session.run([output_name], {input_name: image})"
1616
+ ],
1617
+ "metadata": {
1618
+ "id": "AE0Ul1wnU12t"
1619
+ },
1620
+ "execution_count": 24,
1621
+ "outputs": []
1622
+ },
1623
+ {
1624
+ "cell_type": "code",
1625
+ "source": [
1626
+ "predicted_label_index = np.argmax(output[0])\n",
1627
+ "label_mapping = {\n",
1628
+ " \"0\": \"Angle1\",\n",
1629
+ " \"1\": \"Angle10\",\n",
1630
+ " \"2\": \"Angle11\",\n",
1631
+ " \"3\": \"Angle12\",\n",
1632
+ " \"4\": \"Angle13\",\n",
1633
+ " \"5\": \"Angle14\",\n",
1634
+ " \"6\": \"Angle15\",\n",
1635
+ " \"7\": \"Angle16\",\n",
1636
+ " \"8\": \"Angle2\",\n",
1637
+ " \"9\": \"Angle3\",\n",
1638
+ " \"10\": \"Angle4\",\n",
1639
+ " \"11\": \"Angle5\",\n",
1640
+ " \"12\": \"Angle6\",\n",
1641
+ " \"13\": \"Angle7\",\n",
1642
+ " \"14\": \"Angle8\",\n",
1643
+ " \"15\": \"Angle9\"\n",
1644
+ " }\n",
1645
+ "predicted_label = label_mapping[str(predicted_label_index)]\n",
1646
+ "\n",
1647
+ "print(\"Predicted label:\", predicted_label)"
1648
+ ],
1649
+ "metadata": {
1650
+ "colab": {
1651
+ "base_uri": "https://localhost:8080/"
1652
+ },
1653
+ "id": "om6AZP1LWFeX",
1654
+ "outputId": "1921ae88-b6fe-4962-ad46-17fa449bdfc2"
1655
+ },
1656
+ "execution_count": 28,
1657
+ "outputs": [
1658
+ {
1659
+ "output_type": "stream",
1660
+ "name": "stdout",
1661
+ "text": [
1662
+ "Predicted label: Angle15\n"
1663
+ ]
1664
+ }
1665
+ ]
1666
+ },
1667
+ {
1668
+ "cell_type": "code",
1669
+ "source": [],
1670
+ "metadata": {
1671
+ "colab": {
1672
+ "base_uri": "https://localhost:8080/"
1673
+ },
1674
+ "id": "e_43UAm9V_fT",
1675
+ "outputId": "44271324-7ff0-46be-fc73-5989e07cc1d7"
1676
+ },
1677
+ "execution_count": 27,
1678
+ "outputs": [
1679
+ {
1680
+ "output_type": "execute_result",
1681
+ "data": {
1682
+ "text/plain": [
1683
+ "6"
1684
+ ]
1685
+ },
1686
+ "metadata": {},
1687
+ "execution_count": 27
1688
+ }
1689
+ ]
1690
+ },
1691
+ {
1692
+ "cell_type": "code",
1693
+ "source": [],
1694
+ "metadata": {
1695
+ "id": "MhM9BJ9xZR9O"
1696
+ },
1697
+ "execution_count": null,
1698
+ "outputs": []
1699
+ }
1700
+ ]
1701
+ }