Nekshay commited on
Commit
d3172ff
1 Parent(s): fca5410

Update New_file.txt

Browse files
Files changed (1) hide show
  1. New_file.txt +11 -12
New_file.txt CHANGED
@@ -1,14 +1,15 @@
1
  import torch
2
- from transformers import SwinTransformer, SwinTransformerTokenizer
3
  import torchvision.transforms as transforms
4
  from PIL import Image
5
  import numpy as np
6
  from sklearn.metrics.pairwise import cosine_similarity
 
 
 
7
 
8
- # Load the pre-trained Swin Transformer model and tokenizer
9
- model_name = "microsoft/Swin-Transformer-base-patch4-in22k"
10
- model = SwinTransformer.from_pretrained(model_name)
11
- tokenizer = SwinTransformerTokenizer.from_pretrained(model_name)
12
 
13
  # Define a function to preprocess images
14
  def preprocess_image(image_path):
@@ -22,29 +23,27 @@ def preprocess_image(image_path):
22
  return image
23
 
24
  # Load your ideal subset of images
25
- ideal_image_paths = ["ideal_image1.jpg", "ideal_image2.jpg", "ideal_image3.jpg"] # Replace with your ideal image file paths
26
  ideal_embeddings = []
27
 
28
  for image_path in ideal_image_paths:
29
  image = preprocess_image(image_path)
30
  with torch.no_grad():
31
- input_ids = tokenizer(image_path, return_tensors="pt").input_ids
32
- embedding = model.pixel_values(input_ids).numpy()
33
  ideal_embeddings.append(embedding)
34
 
35
  # Load a set of candidate images
36
- candidate_image_paths = ["candidate_image1.jpg", "candidate_image2.jpg", "candidate_image3.jpg"] # Replace with your candidate image file paths
37
  candidate_embeddings = []
38
 
39
  for image_path in candidate_image_paths:
40
  image = preprocess_image(image_path)
41
  with torch.no_grad():
42
- input_ids = tokenizer(image_path, return_tensors="pt").input_ids
43
- embedding = model.pixel_values(input_ids).numpy()
44
  candidate_embeddings.append(embedding)
45
 
46
  # Calculate similarities between ideal and candidate images using cosine similarity
47
  similarities = cosine_similarity(ideal_embeddings, candidate_embeddings)
48
 
49
  # Print the similarity matrix
50
- print(similarities)
 
1
  import torch
 
2
  import torchvision.transforms as transforms
3
  from PIL import Image
4
  import numpy as np
5
  from sklearn.metrics.pairwise import cosine_similarity
6
+ from torchvision.models import resnet50
7
+ from torchvision.datasets import ImageFolder
8
+ from torch.utils.data import DataLoader
9
 
10
+ # Load a pre-trained ResNet-50 model
11
+ model = resnet50(pretrained=True)
12
+ model.eval()
 
13
 
14
  # Define a function to preprocess images
15
  def preprocess_image(image_path):
 
23
  return image
24
 
25
  # Load your ideal subset of images
26
+ ideal_image_paths = ["/content/trunck.jpg", "t4.jpg"] # Replace with your ideal image file paths
27
  ideal_embeddings = []
28
 
29
  for image_path in ideal_image_paths:
30
  image = preprocess_image(image_path)
31
  with torch.no_grad():
32
+ embedding = model(image).squeeze().numpy()
 
33
  ideal_embeddings.append(embedding)
34
 
35
  # Load a set of candidate images
36
+ candidate_image_paths = ["/content/trunck2.jpg", "t3.jpg", "car.jpg",] # Replace with your candidate image file paths
37
  candidate_embeddings = []
38
 
39
  for image_path in candidate_image_paths:
40
  image = preprocess_image(image_path)
41
  with torch.no_grad():
42
+ embedding = model(image).squeeze().numpy()
 
43
  candidate_embeddings.append(embedding)
44
 
45
  # Calculate similarities between ideal and candidate images using cosine similarity
46
  similarities = cosine_similarity(ideal_embeddings, candidate_embeddings)
47
 
48
  # Print the similarity matrix
49
+ print(similarities)