--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.905 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [NemesisAlm/distilhubert-finetuned-gtzan](https://huggingface.co/NemesisAlm/distilhubert-finetuned-gtzan) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7322 - Accuracy: 0.905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0002 | 1.0 | 100 | 0.5783 | 0.915 | | 0.1984 | 2.0 | 200 | 0.7051 | 0.91 | | 0.0518 | 3.0 | 300 | 1.0287 | 0.865 | | 0.0039 | 4.0 | 400 | 0.7660 | 0.895 | | 0.0001 | 5.0 | 500 | 0.7513 | 0.91 | | 0.0001 | 6.0 | 600 | 0.7757 | 0.9 | | 0.0002 | 7.0 | 700 | 0.9340 | 0.87 | | 0.0001 | 8.0 | 800 | 0.7237 | 0.9 | | 0.0001 | 9.0 | 900 | 0.7298 | 0.905 | | 0.0001 | 10.0 | 1000 | 0.7322 | 0.905 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3