File size: 19,212 Bytes
9f57238 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
---
base_model: sentence-transformers/all-MiniLM-L12-v2
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100000
- loss:CosineSimilarityLoss
widget:
- source_sentence: The church has granite statues of Jesus and the Apostles adorning
its porch .
sentences:
- There were no statues in the church .
- L' Afrique du sud et le reste de l' Afrique sont les mêmes .
- Tours on foot are a great way to see LA .
- source_sentence: Au Centre du réseau routier de la région , Alicante est également
une base logique pour les automobilistes et pour les liaisons ferroviaires et
ferroviaires .
sentences:
- Alicante est fréquentée par les automobilistes et les touristes .
- Les examinateurs ont passé sept mois à étudier leurs conclusions .
- Ferries to the island depart from the central station every 2 hours .
- source_sentence: Scheduled to reopen in 2002 or 2003 , the Malibu site will house
only the Getty holdings in Greek and Roman antiquities , some of which date as
far back as 3000 b.c.
sentences:
- C' est impossible d' avoir des billets pour les enregistrements télévisés .
- The Getty holdings were taken hold of thanks to the researchers ' effort .
- After the first of may ends the peak season for ferries .
- source_sentence: Une nouvelle recherche relie ces bactéries parodontale aux maladies
cardiaques , au diabète , aux bébés à faible poids de naissance , et à d' autres
saletés que vous attendez des bactéries qui se déchaînent dans le sang .
sentences:
- Le prix des actions de Caterpillar a baissé en 1991 quand ils ont fait grève .
- Ils agissent comme chaque année est la même .
- La recherche indique qu' il n' y a pas de lien entre les bactéries parodontale
et les maladies cardiaques ou le diabète .
- source_sentence: L' ancien n' est pas une classification juridique qui entraîne
une perte automatique de ces droits .
sentences:
- Some degree of uncertainty is inherent in free-market systems .
- Les villes grecques d' Anatolie ont été exclues de l' appartenance à la Confédération
Delian .
- Ils voulaient plaider pour les personnes âgées .
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: snli dev
type: snli-dev
metrics:
- type: pearson_cosine
value: 0.35421287329686374
name: Pearson Cosine
- type: spearman_cosine
value: 0.3592670991851331
name: Spearman Cosine
- type: pearson_manhattan
value: 0.34936411192844985
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.3583327923327215
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.34982920048695176
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.35926709915022625
name: Spearman Euclidean
- type: pearson_dot
value: 0.3542128787197555
name: Pearson Dot
- type: spearman_dot
value: 0.35926727022169175
name: Spearman Dot
- type: pearson_max
value: 0.3542128787197555
name: Pearson Max
- type: spearman_max
value: 0.35926727022169175
name: Spearman Max
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) <!-- at revision 30ce63ae64e71b9199b3d2eae9de99f64a26eedc -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Nessrine9/finetuned-snli-MiniLM-L12-v2-100k-en-fr")
# Run inference
sentences = [
"L' ancien n' est pas une classification juridique qui entraîne une perte automatique de ces droits .",
'Ils voulaient plaider pour les personnes âgées .',
"Les villes grecques d' Anatolie ont été exclues de l' appartenance à la Confédération Delian .",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `snli-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.3542 |
| spearman_cosine | 0.3593 |
| pearson_manhattan | 0.3494 |
| spearman_manhattan | 0.3583 |
| pearson_euclidean | 0.3498 |
| spearman_euclidean | 0.3593 |
| pearson_dot | 0.3542 |
| spearman_dot | 0.3593 |
| pearson_max | 0.3542 |
| **spearman_max** | **0.3593** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 100,000 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 5 tokens</li><li>mean: 34.31 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 18.24 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
* Samples:
| sentence_0 | sentence_1 | label |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|:-----------------|
| <code>We 're off ! "</code> | <code>We 're not headed off .</code> | <code>1.0</code> |
| <code>Il y en a eu un ici récemment qui me vient à l' esprit que c' est à propos d' une femme que c' est ridicule je veux dire que c' est presque euh ce serait drôle si ce n' était pas si triste je veux dire cette femme cette femme est sortie et a engagé quelqu' un à</code> | <code>Cette femme a engagé quelqu' un récemment pour le faire et s' est fait prendre immédiatement .</code> | <code>0.5</code> |
| <code>Gentilello a précisé qu' il n' avait pas critiqué le processus d' examen par les pairs , mais que les panels qui examinent les interventions en matière d' alcool dans l' eds devraient inclure des représentants de la médecine d' urgence .</code> | <code>Gentilello S' est ensuite battu avec un psychiatre sur le parking .</code> | <code>0.5</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `fp16`: True
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss | snli-dev_spearman_max |
|:------:|:-----:|:-------------:|:---------------------:|
| 0.08 | 500 | 0.1948 | 0.0484 |
| 0.16 | 1000 | 0.1752 | 0.1177 |
| 0.24 | 1500 | 0.1727 | 0.1136 |
| 0.32 | 2000 | 0.1668 | 0.2050 |
| 0.4 | 2500 | 0.1673 | 0.2227 |
| 0.48 | 3000 | 0.1651 | 0.1760 |
| 0.56 | 3500 | 0.1619 | 0.2195 |
| 0.64 | 4000 | 0.1625 | 0.2308 |
| 0.72 | 4500 | 0.1563 | 0.2405 |
| 0.8 | 5000 | 0.1598 | 0.2773 |
| 0.88 | 5500 | 0.1589 | 0.2359 |
| 0.96 | 6000 | 0.1587 | 0.2084 |
| 1.0 | 6250 | - | 0.2615 |
| 1.04 | 6500 | 0.158 | 0.2958 |
| 1.12 | 7000 | 0.1557 | 0.2887 |
| 1.2 | 7500 | 0.1544 | 0.2960 |
| 1.28 | 8000 | 0.1535 | 0.2977 |
| 1.3600 | 8500 | 0.1559 | 0.2546 |
| 1.44 | 9000 | 0.1518 | 0.3201 |
| 1.52 | 9500 | 0.1551 | 0.2894 |
| 1.6 | 10000 | 0.149 | 0.2981 |
| 1.6800 | 10500 | 0.152 | 0.3140 |
| 1.76 | 11000 | 0.1484 | 0.3056 |
| 1.8400 | 11500 | 0.1497 | 0.3051 |
| 1.92 | 12000 | 0.1522 | 0.2893 |
| 2.0 | 12500 | 0.1503 | 0.2944 |
| 2.08 | 13000 | 0.1496 | 0.3039 |
| 2.16 | 13500 | 0.1462 | 0.3314 |
| 2.24 | 14000 | 0.1505 | 0.2470 |
| 2.32 | 14500 | 0.1457 | 0.3081 |
| 2.4 | 15000 | 0.1478 | 0.3204 |
| 2.48 | 15500 | 0.1464 | 0.3248 |
| 2.56 | 16000 | 0.1442 | 0.3360 |
| 2.64 | 16500 | 0.1437 | 0.3418 |
| 2.7200 | 17000 | 0.1416 | 0.3496 |
| 2.8 | 17500 | 0.1434 | 0.3283 |
| 2.88 | 18000 | 0.146 | 0.3246 |
| 2.96 | 18500 | 0.1448 | 0.3352 |
| 3.0 | 18750 | - | 0.3248 |
| 3.04 | 19000 | 0.1445 | 0.3394 |
| 3.12 | 19500 | 0.1423 | 0.3430 |
| 3.2 | 20000 | 0.1415 | 0.3410 |
| 3.2800 | 20500 | 0.1411 | 0.3367 |
| 3.36 | 21000 | 0.1445 | 0.3497 |
| 3.44 | 21500 | 0.1383 | 0.3640 |
| 3.52 | 22000 | 0.1408 | 0.3497 |
| 3.6 | 22500 | 0.1374 | 0.3452 |
| 3.68 | 23000 | 0.1401 | 0.3519 |
| 3.76 | 23500 | 0.137 | 0.3582 |
| 3.84 | 24000 | 0.1393 | 0.3610 |
| 3.92 | 24500 | 0.1408 | 0.3575 |
| 4.0 | 25000 | 0.1388 | 0.3593 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |