Mpt-Instruct-DotNet-XS / mosaic_gpt.py
Kabumbus's picture
Trained model
5df4390
# Copyright 2022 MosaicML Examples authors
# SPDX-License-Identifier: Apache-2.0
"""A simple, flexible implementation of a GPT model.
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
"""
import math
import warnings
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoTokenizer, PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from .attention import attn_bias as module_attn_bias, attn_bias_shape as module_attn_bias_shape
from .gpt_blocks import GPTBlock
from .configuration_mosaic_gpt import \
MosaicGPTConfig
from .param_init_fns import MODEL_INIT_REGISTRY
from .low_precision_layernorm import LPLayerNorm
class MosaicGPT(PreTrainedModel):
config_class = MosaicGPTConfig
base_model_prefix = 'mosaic_gpt'
def __init__(self, config: MosaicGPTConfig):
super().__init__(config)
if config.attn_impl == 'flash' and config.alibi:
raise RuntimeError("ALiBi is not supported with flash attention. Please use triton or torch.")
self.attn_impl = config.attn_impl
self.prefix_lm = config.prefix_lm
self.attn_uses_sequence_id = config.attn_uses_sequence_id
self.alibi = config.alibi
self.alibi_bias_max = config.alibi_bias_max
layernorm_class = LPLayerNorm if config.low_precision_layernorm else nn.LayerNorm
# CogView (https://arxiv.org/abs/2105.13290) and GLM-130B (https://arxiv.org/abs/2210.02414)
# both report this helping with stabilizing training
self.embedding_fraction = config.embedding_fraction
self.transformer = nn.ModuleDict({
'wte':
nn.Embedding(config.vocab_size,
config.d_model,
device=config.init_device)
})
if not self.alibi:
self.transformer.update({
'wpe':
nn.Embedding(config.max_seq_len,
config.d_model,
device=config.init_device)
})
self.transformer.update({'emb_drop': nn.Dropout(config.emb_pdrop)})
self.transformer.update({
'blocks':
nn.ModuleList([
GPTBlock(device=config.init_device,
**config.to_dict())
for _ in range(config.n_layers)
])
})
self.transformer.update({
'ln_f': layernorm_class(config.d_model, device=config.init_device)
})
# enables scaling output logits; similar to a softmax "temperature"
# PaLM paper uses scale 1/sqrt(config.d_model)
self.logit_scale = None
if config.logit_scale is not None:
logit_scale = config.logit_scale
if isinstance(logit_scale, str):
if logit_scale == 'inv_sqrt_d_model':
logit_scale = 1 / math.sqrt(config.d_model)
else:
raise ValueError(
f"{logit_scale=} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'."
)
self.logit_scale = logit_scale
if config.init_device != 'meta':
print(
f'You are using {config.init_device=}, but you can also use config.init_device="meta" with Composer + FSDP for fast initialization.'
)
self.apply(self.param_init_fn)
self.is_causal = not self.prefix_lm
# define attn mask
self._attn_bias_initialized = False
self.attn_bias = None
self.attn_bias_shape = module_attn_bias_shape(
self.attn_impl,
config.n_heads,
config.max_seq_len,
self.alibi,
prefix_lm=self.prefix_lm,
causal=self.is_causal,
use_sequence_id=self.attn_uses_sequence_id)
if config.no_bias:
for module in self.modules():
if hasattr(module, 'bias') and isinstance(
module.bias, nn.Parameter):
if config.verbose:
print(f'Removing bias ({module.bias}) from {module}.')
module.register_parameter('bias', None)
if config.verbose and config.verbose > 2:
print(self)
@torch.no_grad()
def _attn_bias(self,
device,
dtype,
attention_mask: Optional[torch.ByteTensor] = None,
prefix_mask: Optional[torch.ByteTensor] = None,
sequence_id: Optional[torch.LongTensor] = None):
if not self._attn_bias_initialized:
if self.attn_bias_shape:
self.attn_bias = torch.zeros(self.attn_bias_shape,
device=device,
dtype=dtype)
self.attn_bias = module_attn_bias(
self.attn_impl,
self.attn_bias,
self.config.n_heads,
self.config.max_seq_len,
causal=self.is_causal,
alibi=self.alibi,
alibi_bias_max=self.alibi_bias_max)
self._attn_bias_initialized = True
# flash does not support prefix_lm and will incorporate any
# attention_mask inside the attention module
if self.attn_impl == 'flash':
return self.attn_bias, attention_mask
attn_bias = self.attn_bias
# If using torch or triton, we incorporate the prefix_mask (if appropriate)
if self.prefix_lm:
assert isinstance(attn_bias, torch.Tensor) # pyright
assert isinstance(prefix_mask, torch.Tensor) # pyright
attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
# If using torch or triton, we incorporate sequence_id (if appropriate)
if self.attn_uses_sequence_id and sequence_id is not None:
assert isinstance(attn_bias, torch.Tensor) # pyright
attn_bias = self._apply_sequence_id(attn_bias, sequence_id)
# If using torch or triton, we incorporate attention_mask. This will output
# None in place of attention_mask since it will not be further needed in the
# attention modules.
if attention_mask is not None:
s_k = attention_mask.shape[-1]
if attn_bias is None:
attn_bias = torch.zeros((1, 1, 1, s_k),
device=device,
dtype=dtype)
else:
attn_bias = attn_bias[:, :, :, -s_k:]
if prefix_mask is not None and (attention_mask.shape !=
prefix_mask.shape):
raise ValueError(
f'attention_mask shape={attention_mask.shape} ' +\
f'and prefix_mask shape={prefix_mask.shape} are not equal.'
)
min_val = torch.finfo(attn_bias.dtype).min
attn_bias = attn_bias.masked_fill(
~attention_mask.view(-1, 1, 1, s_k), min_val)
return attn_bias, None
def _apply_prefix_mask(self, attn_bias: torch.Tensor,
prefix_mask: torch.Tensor):
s_k, s_q = attn_bias.shape[-2:]
if (s_k != self.config.max_seq_len) or (s_q != self.config.max_seq_len):
raise ValueError(
'attn_bias does not match the expected shape. ' +\
f'The last two dimensions should both be {self.config.max_length} ' +\
f'but are {s_k} and {s_q}.'
)
seq_len = prefix_mask.shape[-1]
if seq_len > self.config.max_seq_len:
raise ValueError(
f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}'
)
# select seq_len subset of attn mask
attn_bias = attn_bias[..., :seq_len, :seq_len]
# Mix the causal max and the bidirectional mask to get the full
# allowable attention (i.e. full = not accounting for padding yet)
causal = torch.tril(
torch.ones((seq_len, seq_len),
dtype=torch.bool,
device=prefix_mask.device)).view(1, 1, seq_len, seq_len)
prefix = prefix_mask.view(-1, 1, 1, seq_len)
cannot_attend = ~torch.logical_or(causal, prefix.bool())
min_val = torch.finfo(attn_bias.dtype).min
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
return attn_bias
def _apply_sequence_id(self, attn_bias: torch.Tensor,
sequence_id: torch.LongTensor):
seq_len = sequence_id.shape[-1]
if seq_len > self.config.max_seq_len:
raise ValueError(
f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}'
)
# select seq_len subset of attn mask
attn_bias = attn_bias[..., :seq_len, :seq_len]
# Restrict attention to tokens that share the same value
# in sequence_id
cannot_attend = torch.logical_not(
torch.eq(sequence_id.view(-1, seq_len, 1),
sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
min_val = torch.finfo(attn_bias.dtype).min
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
return attn_bias
def forward(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
attention_mask: Optional[torch.ByteTensor] = None,
prefix_mask: Optional[torch.ByteTensor] = None,
sequence_id: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
use_cache: Optional[bool] = None):
return_dict = return_dict if return_dict is not None else self.config.return_dict
use_cache = use_cache if use_cache is not None else self.config.use_cache
# These args are passed in by keyword in huggingface's generate function
# https://github.com/huggingface/transformers/blob/68287689f2f0d8b7063c400230b3766987abf18d/src/transformers/generation/utils.py#L2201-L2206
# but have not yet been fully implemented in MosaicGPT
if not return_dict:
raise NotImplementedError(
'return_dict False is not implemented yet for MosaicGPT')
if output_attentions:
raise NotImplementedError(
'output_attentions is not implemented yet for MosaicGPT')
if attention_mask is not None and attention_mask[:, 0].sum(
) != attention_mask.shape[0] and self.training:
raise NotImplementedError(
'MosaicGPT does not support training with left padding.')
if self.prefix_lm and prefix_mask is None:
raise ValueError(
'prefix_mask is a required argument when MosaicGPT is configured with prefix_lm=True.'
)
if self.training:
if self.attn_uses_sequence_id and sequence_id is None:
raise ValueError(
'sequence_id is a required argument when MosaicGPT is configured with attn_uses_sequence_id=True ' +\
'and the model is in train mode.'
)
elif (self.attn_uses_sequence_id is False) and (sequence_id
is not None):
warnings.warn(
'MosaicGPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' +\
'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.'
)
S = input_ids.size(1)
assert (
S <= self.config.max_seq_len
), f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
tok_emb = self.transformer.wte(input_ids) # type: ignore
if self.alibi:
x = tok_emb
else:
past_position = 0
if past_key_values is not None:
if len(past_key_values) != self.config.n_layers:
raise ValueError(
f'past_key_values must provide a past_key_value for each attention ' +\
f'layer in the network ({len(past_key_values)=}; {self.config.n_layers=}).'
)
# get the key tensor whose spec should be (batch, seq, dim), and
# collect the `seq`, so that the position embedding is shifted
past_position = past_key_values[0][0].size(1)
if S + past_position > self.config.max_seq_len:
raise ValueError(
f'Cannot forward input with past sequence length {past_position} and current sequence length '
f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.'
)
pos = torch.arange(past_position,
S + past_position,
dtype=torch.long,
device=input_ids.device).unsqueeze(0)
if attention_mask is not None:
# adjust the position indices to account for padding tokens
pos = torch.clamp(pos - torch.cumsum(
(~attention_mask).to(torch.int32), dim=1)[:,
past_position:],
min=0)
pos_emb = self.transformer.wpe(pos) # type: ignore
x = tok_emb + pos_emb
if self.embedding_fraction == 1:
x = self.transformer.emb_drop(x) # type: ignore
else:
# this implementation is proposed on page 7 of the GLM-130B paper https://arxiv.org/abs/2210.02414
x_shrunk = (x * self.embedding_fraction) + (
x.detach() * (1 - self.embedding_fraction))
assert isinstance(self.transformer.emb_drop, nn.Module) # pyright
x = self.transformer.emb_drop(x_shrunk)
attn_bias, attention_mask = self._attn_bias(
device=x.device,
dtype=x.dtype,
attention_mask=attention_mask,
prefix_mask=prefix_mask,
sequence_id=sequence_id)
# initialize the past key values cache if it should be used
if use_cache and past_key_values is None:
past_key_values = [() for _ in range(self.config.n_layers)
] # type: ignore
all_hidden_states = () if output_hidden_states else None
for b_idx, block in enumerate(self.transformer.blocks): # type: ignore
if output_hidden_states:
assert all_hidden_states is not None # pyright
all_hidden_states = all_hidden_states + (x,)
past_key_value = past_key_values[
b_idx] if past_key_values is not None else None
x, past_key_value = block(x,
past_key_value=past_key_value,
attn_bias=attn_bias,
attention_mask=attention_mask,
is_causal=self.is_causal)
if past_key_values is not None:
past_key_values[b_idx] = past_key_value
x = self.transformer.ln_f(x) # type: ignore
# output embedding weight tied to input embedding
assert isinstance(self.transformer.wte, nn.Module) # pyright
assert isinstance(self.transformer.wte.weight, torch.Tensor) # pyright
logits = F.linear(x, self.transformer.wte.weight, None)
if self.logit_scale is not None:
if self.logit_scale == 0:
warnings.warn(
f'Multiplying logits by {self.logit_scale=}. This will produce uniform (uninformative) outputs.'
)
logits *= self.logit_scale
return CausalLMOutputWithPast(logits=logits,
past_key_values=past_key_values,
hidden_states=all_hidden_states)
# Param Initialization, needed for device='meta' fast initialization
def param_init_fn(self, module):
init_fn_name = self.config.param_init_fn
if self.config.verbose > 1:
warnings.warn(f'Using {init_fn_name} initialization.')
MODEL_INIT_REGISTRY[init_fn_name](module=module,
**self.config.to_dict())
# FSDP Wrap function
def fsdp_wrap_fn(self, module):
return isinstance(module, GPTBlock)
# Activation Checkpointing
def activation_checkpointing_fn(self, module):
return isinstance(module, GPTBlock)
def prepare_inputs_for_generation(self,
input_ids,
past_key_values=None,
inputs_embeds=None,
**kwargs):
if inputs_embeds is not None:
raise NotImplementedError(
'inputs_embeds is not implemented for MosaicGPT yet')
attention_mask = kwargs['attention_mask'].bool()
if attention_mask[:, -1].sum() != attention_mask.shape[0]:
raise NotImplementedError(
'MosaicGPT does not support generation with right padding.')
if self.attn_uses_sequence_id and self.training:
sequence_id = torch.zeros_like(input_ids[:1])
else:
sequence_id = None
if past_key_values is not None:
input_ids = input_ids[:, -1].unsqueeze(-1)
if self.prefix_lm:
# Leverage a convenience of sequential generation!
prefix_mask = torch.ones_like(attention_mask)
# This requires that we're using the cache
if kwargs.get('use_cache') == False:
raise NotImplementedError(
'MosaicGPT with prefix_lm=True does not support use_cache=False.'
)
else:
prefix_mask = None
return {
'input_ids': input_ids,
'attention_mask': attention_mask,
'prefix_mask': prefix_mask,
'sequence_id': sequence_id,
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache', True),
}
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
"""Used by HuggingFace generate when using beam search with kv-caching.
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
for an example in transformers.
"""
reordered_past = []
for layer_past in past_key_values:
reordered_past += [
tuple(
past_state.index_select(0, beam_idx)
for past_state in layer_past)
]
return reordered_past