File size: 924 Bytes
ba1befb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(".", use_auth_token=None)
model = AutoModelForCausalLM.from_pretrained(".", use_auth_token=None)
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Example text input
text_input = "How QOS is applied on routers?"
p="""
<|system|>
You are a helpful assistant.<|end|>
<|user|>""" + text_input + """<|end|>
<|assistant|>
"""
# Tokenize and move input to device
inputs = tokenizer(p, return_tensors="pt")
inputs = inputs.to(device)
print("User Query: " + text_input)
# Generate text on the device
outputs = model.generate(**inputs, max_length=2000, num_return_sequences=1)
print("Model Response: ")
# Decode generated text
for output in outputs:
generated_text = tokenizer.decode(output, skip_special_tokens=True)
print(generated_text) |