Netta1994 commited on
Commit
259efae
1 Parent(s): 929f0e1

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,354 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 'Reasoning why the answer may be good:
14
+
15
+ 1. **Context Grounding:** The answer correctly interprets and references the specific
16
+ part of the provided document that mentions the response status column.
17
+
18
+ 2. **Relevance:** The answer directly addresses the question by explaining what
19
+ the percentage in the response status column indicates.
20
+
21
+ 3. **Conciseness:** The answer is concise and avoids unnecessary information,
22
+ focusing solely on the meaning of the percentage in the response status column.
23
+
24
+ 4. **Specificity:** The answer gives a detailed explanation about what the percentage
25
+ represents—successful completion of response actions.
26
+
27
+ 5. **Accuracy:** The key concept of the percentage indicating the total amount
28
+ of successful completion of response actions is correctly conveyed as per the
29
+ document.
30
+
31
+
32
+ Reasoning why the answer may be bad:
33
+
34
+ There is no apparent reason for the answer to be bad; it aligns well with the
35
+ document and addresses the question directly and concisely.
36
+
37
+
38
+ Final result:'
39
+ - text: 'Reasoning:
40
+
41
+ **Why the answer may be good:**
42
+
43
+ - It accurately states that the provided information does not address the specific
44
+ question.
45
+
46
+ - It directs the reader to seek additional information or context.
47
+
48
+
49
+ **Why the answer may be bad:**
50
+
51
+ - It does not attempt to relate or infer an answer based on the document provided.
52
+
53
+ - The document does provide relevant details about endpoint controls, including
54
+ that they involve Device Control, Personal Firewall Control, and Full Disk Encryption
55
+ Visibility, which can imply their purpose.
56
+
57
+ - The response is somewhat evasive and does not leverage any context offered by
58
+ the document to give an informed answer.
59
+
60
+
61
+ Final Result:'
62
+ - text: 'Reasoning why the answer may be good:
63
+
64
+ - The provided answer is addressing the purpose of an agent (collecting and securely
65
+ forwarding logs), aligning with the context of log collection and forwarding described
66
+ in the document.
67
+
68
+
69
+ Reasoning why the answer may be bad:
70
+
71
+ - The answer is missing specificity. It does not mention on-site collection nor
72
+ does it specify the direct forwarding feature mentioned in the document.
73
+
74
+ - It lacks details specified in the document about the agent being used for integrations
75
+ that do not use cloud feeds, e.g., firewalls.
76
+
77
+ - The answer does not mention <ORGANIZATION> explicitly ties into the detection
78
+ and correlation engine.
79
+
80
+
81
+ Final result:'
82
+ - text: '### Reasoning
83
+
84
+
85
+ **Good Aspects of the Answer:**
86
+
87
+ 1. **Context Grounding:** The answer correctly pulls context from the document
88
+ regarding email notifications.
89
+
90
+ 2. **Relevance:** The answer attempts to address the purpose of the email notifications
91
+ checkbox directly.
92
+
93
+
94
+ **Bad Aspects of the Answer:**
95
+
96
+ 1. **Key/Value/Event Name Accuracy:** The document outlines a checkbox related
97
+ to enabling or disabling email notifications, but the answer uses placeholder
98
+ text "ORGANIZATION_2," which needs replacement for accuracy.
99
+
100
+ 2. **Conciseness:** The answer is somewhat repetitive with the phrasing "ORGANIZATION_2
101
+ or disable," which should clearly state "enable or disable."
102
+
103
+ 3. **Specificity:** The answer lacks the specific detail from the document that
104
+ this is specific to stale or archived sensors and involves System Admins.
105
+
106
+
107
+ ### Final Evaluation
108
+
109
+
110
+ **Final Result:** `Bad`
111
+
112
+
113
+ The placeholder text makes the information ambiguous and not actionable. Additionally,
114
+ there is a slight redundancy and missing specific roles (System Admin) and context(stale/archived
115
+ sensors) necessary for precision.'
116
+ - text: 'Reasoning why the answer may be good:
117
+
118
+ - The answer provides a specific URL, which is required by the question.
119
+
120
+ - It appears to be in the format expected for image URLs as hinted at in the document.
121
+
122
+
123
+ Reasoning why the answer may be bad:
124
+
125
+ - The provided answer does not match the precise URL given in the document.
126
+
127
+ - The correct URL for the second query should be `..\/..\/_images\/hunting_http://miller.co`,
128
+ while the answer contains `hunting_http://www.flores.net/`, which is not mentioned
129
+ in the document.
130
+
131
+ - The answer does not reflect careful cross-referencing with the provided document.
132
+
133
+
134
+ Final result:'
135
+ inference: true
136
+ model-index:
137
+ - name: SetFit with BAAI/bge-base-en-v1.5
138
+ results:
139
+ - task:
140
+ type: text-classification
141
+ name: Text Classification
142
+ dataset:
143
+ name: Unknown
144
+ type: unknown
145
+ split: test
146
+ metrics:
147
+ - type: accuracy
148
+ value: 0.704225352112676
149
+ name: Accuracy
150
+ ---
151
+
152
+ # SetFit with BAAI/bge-base-en-v1.5
153
+
154
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
155
+
156
+ The model has been trained using an efficient few-shot learning technique that involves:
157
+
158
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
159
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
160
+
161
+ ## Model Details
162
+
163
+ ### Model Description
164
+ - **Model Type:** SetFit
165
+ - **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
166
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
167
+ - **Maximum Sequence Length:** 512 tokens
168
+ - **Number of Classes:** 2 classes
169
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
170
+ <!-- - **Language:** Unknown -->
171
+ <!-- - **License:** Unknown -->
172
+
173
+ ### Model Sources
174
+
175
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
176
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
177
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
178
+
179
+ ### Model Labels
180
+ | Label | Examples |
181
+ |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
182
+ | 0 | <ul><li>'Reasoning why the answer may be good:\n- A correct definition of ESG including explaining its aspects (Environmental, Social, and Governance) is provided, which is discussed in the document.\n\nReasoning why the answer may be bad:\n- The answer does not address the specific question asked, which is about measures taken by Chuck Studios to promote sustainability and reduce waste. The document does not mention Chuck Studios at all, making the answer entirely irrelevant to the question.\n\nFinal Result:'</li><li>'Reasoning why the answer may be good:\n\n1. **Context Grounding:** The answer follows the main steps outlined in the document, such as cutting the carrots, adding water, covering with a lid or plastic wrap, microwaving, and checking for tenderness.\n2. **Relevance:** It addresses the question directly by providing a method to microwave carrots.\n3. **Conciseness:** The answer is straightforward and does not deviate into unrelated topics.\n\nReasoning why the answer may be bad:\n\n1. **Context Grounding:** The document does not mention anything about carrots changing color to blue when microwaved for too long; this information is fabricated and not supported by the source.\n2. **Conciseness:** While mostly concise, the inclusion of the incorrect information about carrots turning blue adds unnecessary and misleading information.\n\nFinal Result: ****'</li><li>"Reasoning why the answer may be good:\n1. Context Grounding: The answer is well-grounded in the context provided by the document. It accurately reflects the steps for enabling approval for appointment bookings as described in the provided text.\n2. Relevance: The answer addresses the method of enabling appointment approval, indirectly solving the problem where clients might be unable to book their appointments online.\n3. Conciseness: While the answer is detailed, it is somewhat concise in outlining the step-by-step process.\n\nReasoning why the answer may be bad:\n1. Context Grounding: The answer provided is not directly addressing the specific issue of why clients are unable to book appointments online. Instead, it describes how to enable appointment approval.\n2. Relevance: The answer diverts from the question asked. It does not diagnose or suggest troubleshooting steps for the issue of clients being unable to book appointments.\n3. Conciseness: The answer includes a step-by-step process that isn't required unless it directly solves the inability to book problem. It adds unnecessary steps without first determining if those stepsare relevant to the issue.\n\nFinal result: ****"</li></ul> |
183
+ | 1 | <ul><li>'**Reasoning:**\n\n**Why the answer may be good:**\n1. **Context Grounding:** The answer is well-supported by the document, which lists the specific benefits the author has experienced from their yoga practice.\n2. **Relevance:** The answer directly addresses the question by listing the benefits from the yoga practice, which is exactly what was asked.\n3. **Conciseness:** The answer is to the point and only includes the relevant benefits without unnecessary information.\n\n**Why the answer may be bad:**\n1. **Context Grounding:** There is no issue here; the answer is consistent with the document.\n2. **Relevance:** There is no deviation from the topic; each listed benefit is directly taken from the document.\n3. **Conciseness:** The answer mentions all 10 points clearly and without excessive elaboration, maintaining conciseness.\n\nFinal Result: ****'</li><li>'Reasoning:\nThe given answer is relatively good. \n\n1. Context Grounding: The answer accurately captures several points highlighted in the document. It addresses key characteristics such as fear of gaining weight, food refusal, obsession with food, making excuses not to eat, mood swings, and signs of depression or anxiety.\n2. Relevance: The answer is relevant and directly answers the question about identifying signs of anorexia.\n3. Conciseness: The answer is concise and avoids delving into peripheral details, focusing instead on providing actionable signs to look out for.\n\nHowever, the answer could have included more signs like unusual facial or body hair, sensitivity to cold, or increased exercise habits to be comprehensive.\n\nFinal Result:'</li><li>'Reasoning:\n1. Context Grounding: The answer is closely derived from the provided document, where it lists steps to address the "submitted url marked noindex" error message on a site inspection page.\n2. Relevance: The answer partially addresses the specific question asked regarding what to do if all pages are excluded. It focuses mainly on resolving the \'noindex\' issue rather than handling a situation where all pages are excluded.\n3. Conciseness: The answer is clear and to the point, though it is detailed enough to cover the method of resolving the \'noindex\' problem in a structured manner. However, it may not fully address the broader query of exclusion of all pages.\n4. Correct and Detailed Instructions: The steps included are detailed and correct for resolving a \'noindex\' issue, but they may not fully cover other potential causes for all pages being excluded.\n\nFinal Result:'</li></ul> |
184
+
185
+ ## Evaluation
186
+
187
+ ### Metrics
188
+ | Label | Accuracy |
189
+ |:--------|:---------|
190
+ | **all** | 0.7042 |
191
+
192
+ ## Uses
193
+
194
+ ### Direct Use for Inference
195
+
196
+ First install the SetFit library:
197
+
198
+ ```bash
199
+ pip install setfit
200
+ ```
201
+
202
+ Then you can load this model and run inference.
203
+
204
+ ```python
205
+ from setfit import SetFitModel
206
+
207
+ # Download from the 🤗 Hub
208
+ model = SetFitModel.from_pretrained("Netta1994/setfit_baai_cybereason_gpt-4o_improved-cot-instructions_two_reasoning_remove_final_ev")
209
+ # Run inference
210
+ preds = model("Reasoning why the answer may be good:
211
+ - The answer provides a specific URL, which is required by the question.
212
+ - It appears to be in the format expected for image URLs as hinted at in the document.
213
+
214
+ Reasoning why the answer may be bad:
215
+ - The provided answer does not match the precise URL given in the document.
216
+ - The correct URL for the second query should be `..\/..\/_images\/hunting_http://miller.co`, while the answer contains `hunting_http://www.flores.net/`, which is not mentioned in the document.
217
+ - The answer does not reflect careful cross-referencing with the provided document.
218
+
219
+ Final result:")
220
+ ```
221
+
222
+ <!--
223
+ ### Downstream Use
224
+
225
+ *List how someone could finetune this model on their own dataset.*
226
+ -->
227
+
228
+ <!--
229
+ ### Out-of-Scope Use
230
+
231
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
232
+ -->
233
+
234
+ <!--
235
+ ## Bias, Risks and Limitations
236
+
237
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
238
+ -->
239
+
240
+ <!--
241
+ ### Recommendations
242
+
243
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
244
+ -->
245
+
246
+ ## Training Details
247
+
248
+ ### Training Set Metrics
249
+ | Training set | Min | Median | Max |
250
+ |:-------------|:----|:---------|:----|
251
+ | Word count | 45 | 136.1487 | 302 |
252
+
253
+ | Label | Training Sample Count |
254
+ |:------|:----------------------|
255
+ | 0 | 311 |
256
+ | 1 | 321 |
257
+
258
+ ### Training Hyperparameters
259
+ - batch_size: (16, 16)
260
+ - num_epochs: (1, 1)
261
+ - max_steps: -1
262
+ - sampling_strategy: oversampling
263
+ - num_iterations: 20
264
+ - body_learning_rate: (2e-05, 2e-05)
265
+ - head_learning_rate: 2e-05
266
+ - loss: CosineSimilarityLoss
267
+ - distance_metric: cosine_distance
268
+ - margin: 0.25
269
+ - end_to_end: False
270
+ - use_amp: False
271
+ - warmup_proportion: 0.1
272
+ - l2_weight: 0.01
273
+ - seed: 42
274
+ - eval_max_steps: -1
275
+ - load_best_model_at_end: False
276
+
277
+ ### Training Results
278
+ | Epoch | Step | Training Loss | Validation Loss |
279
+ |:------:|:----:|:-------------:|:---------------:|
280
+ | 0.0006 | 1 | 0.1893 | - |
281
+ | 0.0316 | 50 | 0.2645 | - |
282
+ | 0.0633 | 100 | 0.2581 | - |
283
+ | 0.0949 | 150 | 0.2491 | - |
284
+ | 0.1266 | 200 | 0.2544 | - |
285
+ | 0.1582 | 250 | 0.2538 | - |
286
+ | 0.1899 | 300 | 0.2413 | - |
287
+ | 0.2215 | 350 | 0.1942 | - |
288
+ | 0.2532 | 400 | 0.1354 | - |
289
+ | 0.2848 | 450 | 0.0857 | - |
290
+ | 0.3165 | 500 | 0.0544 | - |
291
+ | 0.3481 | 550 | 0.0412 | - |
292
+ | 0.3797 | 600 | 0.0313 | - |
293
+ | 0.4114 | 650 | 0.0239 | - |
294
+ | 0.4430 | 700 | 0.018 | - |
295
+ | 0.4747 | 750 | 0.0268 | - |
296
+ | 0.5063 | 800 | 0.0185 | - |
297
+ | 0.5380 | 850 | 0.0245 | - |
298
+ | 0.5696 | 900 | 0.0255 | - |
299
+ | 0.6013 | 950 | 0.0201 | - |
300
+ | 0.6329 | 1000 | 0.0187 | - |
301
+ | 0.6646 | 1050 | 0.0132 | - |
302
+ | 0.6962 | 1100 | 0.0129 | - |
303
+ | 0.7278 | 1150 | 0.0065 | - |
304
+ | 0.7595 | 1200 | 0.004 | - |
305
+ | 0.7911 | 1250 | 0.0029 | - |
306
+ | 0.8228 | 1300 | 0.0028 | - |
307
+ | 0.8544 | 1350 | 0.0026 | - |
308
+ | 0.8861 | 1400 | 0.0022 | - |
309
+ | 0.9177 | 1450 | 0.0021 | - |
310
+ | 0.9494 | 1500 | 0.0021 | - |
311
+ | 0.9810 | 1550 | 0.0019 | - |
312
+
313
+ ### Framework Versions
314
+ - Python: 3.10.14
315
+ - SetFit: 1.1.0
316
+ - Sentence Transformers: 3.1.1
317
+ - Transformers: 4.44.0
318
+ - PyTorch: 2.4.0+cu121
319
+ - Datasets: 3.0.0
320
+ - Tokenizers: 0.19.1
321
+
322
+ ## Citation
323
+
324
+ ### BibTeX
325
+ ```bibtex
326
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
327
+ doi = {10.48550/ARXIV.2209.11055},
328
+ url = {https://arxiv.org/abs/2209.11055},
329
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
330
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
331
+ title = {Efficient Few-Shot Learning Without Prompts},
332
+ publisher = {arXiv},
333
+ year = {2022},
334
+ copyright = {Creative Commons Attribution 4.0 International}
335
+ }
336
+ ```
337
+
338
+ <!--
339
+ ## Glossary
340
+
341
+ *Clearly define terms in order to be accessible across audiences.*
342
+ -->
343
+
344
+ <!--
345
+ ## Model Card Authors
346
+
347
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
348
+ -->
349
+
350
+ <!--
351
+ ## Model Card Contact
352
+
353
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
354
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.0",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.0",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7185617ec0ffc9a9e85a2cc89bf615de03c78510dd69a7efeeb9e4fb2f81621c
3
+ size 437951328
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c600ad98efa3ee9383122ca8d1d4fd2d051af92bdadf1023c6814eed19a3bce
3
+ size 7007
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff