NeuronZero commited on
Commit
2e31111
1 Parent(s): 1dc1e8f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -4
README.md CHANGED
@@ -1,8 +1,8 @@
1
-
2
  ---
3
  tags:
4
- - autotrain
5
  - image-classification
 
 
6
  widget:
7
  - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
8
  example_title: Tiger
@@ -12,11 +12,50 @@ widget:
12
  example_title: Palace
13
  datasets:
14
  - Falah/Blood_8_classes_Dataset
 
 
15
  ---
16
 
17
- # Model Trained Using AutoTrain
18
 
19
- - Problem type: Image Classification
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  ## Validation Metrics
22
  No validation metrics available
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  tags:
 
3
  - image-classification
4
+ - auto-train
5
+ - vision
6
  widget:
7
  - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
8
  example_title: Tiger
 
12
  example_title: Palace
13
  datasets:
14
  - Falah/Blood_8_classes_Dataset
15
+ license: apache-2.0
16
+ pipeline_tag: image-classification
17
  ---
18
 
 
19
 
20
+ # ResNet-50 v1.5
21
+
22
+ ResNet model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by He et al.
23
+
24
+ Disclaimer: The team releasing ResNet did not write a model card for this model so this model card has been written by the Hugging Face team.
25
+
26
+ ## Model description
27
+
28
+ ResNet (Residual Network) is a convolutional neural network that democratized the concepts of residual learning and skip connections. This enables to train much deeper models.
29
+
30
+ This is ResNet v1.5, which differs from the original model: in the bottleneck blocks which require downsampling, v1 has stride = 2 in the first 1x1 convolution, whereas v1.5 has stride = 2 in the 3x3 convolution. This difference makes ResNet50 v1.5 slightly more accurate (\~0.5% top1) than v1, but comes with a small performance drawback (~5% imgs/sec) according to [Nvidia](https://catalog.ngc.nvidia.com/orgs/nvidia/resources/resnet_50_v1_5_for_pytorch).
31
+
32
+ ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/resnet_architecture.png)
33
+
34
 
35
  ## Validation Metrics
36
  No validation metrics available
37
+
38
+
39
+ ### How to use
40
+
41
+ Here is how to use this model to classify an image of :
42
+
43
+ ```python
44
+ from transformers import AutoImageProcessor, ResNetForImageClassification
45
+ import torch
46
+ from datasets import load_dataset
47
+
48
+ dataset = load_dataset("huggingface/cats-image")
49
+ image = dataset["test"]["image"][0]
50
+
51
+ processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
52
+ model = ResNetForImageClassification.from_pretrained("microsoft/resnet-50")
53
+
54
+ inputs = processor(image, return_tensors="pt")
55
+
56
+ with torch.no_grad():
57
+ logits = model(**inputs).logits
58
+
59
+ # model predicts one of the 1000 ImageNet classes
60
+ predicted_label = logits.argmax(-1).item()
61
+ print(model.config.id2label[predicted_label])