|
from synthesizer.preprocess import create_embeddings |
|
from utils.argutils import print_args |
|
from pathlib import Path |
|
import argparse |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser( |
|
description="Creates embeddings for the synthesizer from the LibriSpeech utterances.", |
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter |
|
) |
|
parser.add_argument("synthesizer_root", type=Path, help=\ |
|
"Path to the synthesizer training data that contains the audios and the train.txt file. " |
|
"If you let everything as default, it should be <datasets_root>/SV2TTS/synthesizer/.") |
|
parser.add_argument("-e", "--encoder_model_fpath", type=Path, |
|
default="saved_models/default/encoder.pt", help=\ |
|
"Path your trained encoder model.") |
|
parser.add_argument("-n", "--n_processes", type=int, default=4, help= \ |
|
"Number of parallel processes. An encoder is created for each, so you may need to lower " |
|
"this value on GPUs with low memory. Set it to 1 if CUDA is unhappy.") |
|
args = parser.parse_args() |
|
|
|
|
|
print_args(args, parser) |
|
create_embeddings(**vars(args)) |
|
|