import matplotlib.pyplot as plt import torch import torch.nn.functional as F from torch import nn from torch.utils.data import DataLoader from torchvision import datasets, utils from torchvision.transforms import ToTensor from torchvision.transforms import transforms class BasicBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=[1, 1], padding=1) -> None: super(BasicBlock, self).__init__() # 残差部分 self.layer = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride[0], padding=padding, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), # 原地替换 节省内存开销 nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride[1], padding=padding, bias=False), nn.BatchNorm2d(out_channels) ) # shortcut 部分 # 由于存在维度不一致的情况 所以分情况 self.shortcut = nn.Sequential() if stride != 1 or in_channels != out_channels: self.shortcut = nn.Sequential( # 卷积核为1 进行升降维 nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride[0], bias=False), nn.BatchNorm2d(out_channels) ) def forward(self, x): # print('shape of x: {}'.format(x.shape)) out = self.layer(x) # print('shape of out: {}'.format(out.shape)) # print('After shortcut shape of x: {}'.format(self.shortcut(x).shape)) out += self.shortcut(x) out = F.relu(out) return out # 采用bn的网络中,卷积层的输出并不加偏置 class ResNet18(nn.Module): def __init__(self, BasicBlock, num_classes=10) -> None: super(ResNet18, self).__init__() self.in_channels = 64 # 第一层作为单独的 因为没有残差快 self.conv1 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False), nn.BatchNorm2d(64), nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ) # conv2_x self.conv2 = self._make_layer(BasicBlock, 64, [[1, 1], [1, 1]]) # self.conv2_2 = self._make_layer(BasicBlock,64,[1,1]) # conv3_x self.conv3 = self._make_layer(BasicBlock, 128, [[2, 1], [1, 1]]) # self.conv3_2 = self._make_layer(BasicBlock,128,[1,1]) # conv4_x self.conv4 = self._make_layer(BasicBlock, 256, [[2, 1], [1, 1]]) # self.conv4_2 = self._make_layer(BasicBlock,256,[1,1]) # conv5_x self.conv5 = self._make_layer(BasicBlock, 512, [[2, 1], [1, 1]]) # self.conv5_2 = self._make_layer(BasicBlock,512,[1,1]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512, num_classes) self.senet64 = SEAttention(64) self.senet128 = SEAttention(128) self.senet256 = SEAttention(256) self.senet512 = SEAttention(512) # 这个函数主要是用来,重复同一个残差块 def _make_layer(self, block, out_channels, strides): layers = [] for stride in strides: layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels return nn.Sequential(*layers) def forward(self, x): out = self.conv1(x) out = self.conv2(out) print("out1.shape:", out.shape) out = self.senet64(out) out = self.conv3(out) out = self.senet128(out) print("out2.shape:", out.shape) out = self.conv4(out) out = self.senet256(out) print("out3.shape:", out.shape) out = self.conv5(out) print("out4.shape:", out.shape) out = self.senet512(out) out = self.avgpool(out) out = out.reshape(x.shape[0], -1) out = self.fc(out) return out class SEAttention(nn.Module): def __init__(self, in_channels, reduction_ratio=16): super(SEAttention, self).__init__() # 定义全局均值池化层 self.avg_pool = nn.AdaptiveAvgPool2d(1) # 定义全连接层 self.fc = nn.Sequential( nn.Linear(in_channels, in_channels // reduction_ratio), nn.ReLU(inplace=True), nn.Linear(in_channels // reduction_ratio, in_channels), nn.Sigmoid() ) def forward(self, x): # 计算全局平均值,并通过全连接层得到每个通道的重要度 module_input = x # 用于残差计算 x = self.avg_pool(x) x = torch.flatten(x, start_dim=1) x = self.fc(x) x = x.view(-1, x.size(1), 1, 1) # 通过重要度对每个通道的特征图进行加权 x = module_input * x.expand_as(module_input) return x x = torch.rand(4,3,512,512) print("x.shape:", x.shape) model = ResNet18(BasicBlock) y = model(x) print("y.shape:", y.shape)