File size: 1,925 Bytes
a3b400a
 
 
 
 
 
 
 
 
2605b5b
5ca1f76
e7b53e8
 
 
 
 
a3b400a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01a3f9b
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
language:
- en
tags:
- llama
- llama2
---
# MorningStar

![Morningstar](Morningstar.jpg)

| Model                            | Average ⬆️ | ARC   | HellaSwag | MMLU  | TruthfulQA |
|----------------------------------|------------|-------|-----------|-------|------------|
| NewstaR/Morningstar-13b-hf 📑   | 59.93      | 59.04 | 81.93     | 54.63 | 44.12      |


## Model Details
- Model name: MorningStar
- Model type: LLaMa 2 (13 billion parameters)

## Intended Use
- Text generation
- Content creation
- Conversational agent

## Capabilities
MorningStar is optimized for natural language processing tasks like text generation and dialogue. It can produce fluent, coherent text across a variety of topics.

## Limitations
- May generate incorrect or nonsensical text
- Lacks true language understanding
- Potential for generating biased or unsafe content

## Training Data
Details on MorningStar's training data are unavailable. It was likely trained on a large corpus of text data scraped from the internet.

## Ethical Considerations
- Large language models like MorningStar carry risks around bias, toxicity, and misinformation.
- Model outputs should be monitored and filtered before use in real applications.
- Avoid harmful or unethical prompts.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_NewstaR__Morningstar-13b-hf)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 50.48   |
| ARC (25-shot)         | 59.04          |
| HellaSwag (10-shot)   | 81.93    |
| MMLU (5-shot)         | 54.63         |
| TruthfulQA (0-shot)   | 44.12   |
| Winogrande (5-shot)   | 74.51   |
| GSM8K (5-shot)        | 15.24        |
| DROP (3-shot)         | 23.87         |