File size: 32,160 Bytes
c516834
 
 
 
 
 
 
 
 
 
 
 
 
43576e0
1e57a45
43576e0
c516834
6ad73d9
c516834
 
 
 
 
 
abd40c7
c516834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e57a45
c516834
6ad73d9
c516834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43576e0
c516834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e57a45
 
6ad73d9
1e57a45
 
6ad73d9
1e57a45
6ad73d9
 
1e57a45
 
 
6ad73d9
 
 
 
 
 
 
 
 
1e57a45
6ad73d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e57a45
 
 
6ad73d9
 
c516834
43576e0
 
 
1e57a45
43576e0
 
6ad73d9
1e57a45
6ad73d9
 
 
1e57a45
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
from transformers import (
    AutoTokenizer, AutoModelForCausalLM, AutoConfig, logging
)
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
    SequenceClassifierOutputWithPast,
)
from transformers.utils import (ModelOutput)
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.models.qwen2.modeling_qwen2 import (
    Qwen2PreTrainedModel, Qwen2Model, Qwen2RMSNorm
)
from transformers.modeling_attn_mask_utils import (
    AttentionMaskConverter
)
from transformers.models.qwen2.modeling_qwen2 import Qwen2DecoderLayer
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
import torch
import torch.nn as nn
from typing import List, Optional, Tuple, Union
import warnings
from dataclasses import dataclass
from torch.nn import CrossEntropyLoss
from configuration_dolphin import encoder_config_dict, DolphinConfig

CONTEXT_EMB = 896  # Qwen 0.7B has dimension of 896
HIDDEN_EMB = 3584  # Qwen 7B has dimension of 3584
warnings.filterwarnings("ignore")
MEM_SIZE = 32
logger = logging.get_logger(__name__)

@dataclass
class DolphinMemoryOutput(ModelOutput):
    memory_states: Optional[torch.FloatTensor] = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None

class Qwen2ForMemoryOutput(Qwen2PreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.model = Qwen2Model(config)
        self.model.config.pad_token_id = self.model.config.eos_token_id

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        transformer_outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError(
                "Cannot handle batch sizes > 1 if no padding token is defined."
            )
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                sequence_lengths = (
                    torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1)
                )
                sequence_lengths = sequence_lengths % input_ids.shape[-1]
                sequence_lengths = sequence_lengths.to(hidden_states.device)
            else:
                sequence_lengths = -1

        # if sequence_lengths != -1:
        #     assert (sequence_lengths > MEMORY_SIZE).all(), "All sequences must be longer than MEMORY_SIZE"

        MEMORY_SIZE = 32
        batch_range = torch.arange(batch_size, device=hidden_states.device)
        start_indices = sequence_lengths - MEMORY_SIZE
        # print(sequence_lengths)
        # print(torch.arange(MEMORY_SIZE, device=hidden_states.device)[None, :] + start_indices[:, None])
        memory_states = hidden_states[
            batch_range[:, None],
            torch.arange(MEMORY_SIZE, device=hidden_states.device)[None, :]
            + start_indices[:, None],
        ]

        return DolphinMemoryOutput(
            memory_states=memory_states,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )


class Projector(nn.Module):
    def __init__(self, context_dim: int, hidden_dim: int, projection_cls="linear"):
        super().__init__()
        self.projection_cls = projection_cls
        if projection_cls == "linear":
            self.context_projection = nn.Linear(context_dim, hidden_dim)
        elif projection_cls == "mlp":
            dim_projection = hidden_dim
            depth = 2
            layers = [
                nn.Linear(context_dim, dim_projection),
            ]
            for _ in range(1, depth):
                layers.extend(
                    [
                        nn.GELU(),
                        nn.Linear(dim_projection, dim_projection),
                    ]
                )
            self.context_projection = nn.Sequential(*layers)
        else:
            raise ValueError(f"Projection class {projection_cls} not supported")

    def forward(self, x):
        if self.projection_cls == "linear":
            return self.context_projection(x)

        for layer in self.context_projection:
            x = layer(x)
        return x

class ContextEmbd(nn.Module):
    def __init__(
        self, config, context_dim, hidden_dim, MEM_SIZE=32, torch_dtype=torch.bfloat16
    ):
        super().__init__()
        self.encoder = Qwen2ForMemoryOutput(config).to(torch_dtype)
        self.projector = Projector(context_dim, hidden_dim).to(torch_dtype)
        self.MEM_SIZE = MEM_SIZE

    def forward(self, context_input_ids, context_attention_mask=None):
        memory_slot = self.encoder(
            context_input_ids, context_attention_mask, output_hidden_states=True
        ).memory_states

        # now project the memory slot into token space
        return self.projector(memory_slot)

class DolphinModel(Qwen2PreTrainedModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]

    Args:
        config: DolphinModel
    """
    # config_class = DolphinConfig

    def __init__(self, config: DolphinConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(
            config.vocab_size, config.hidden_size, self.padding_idx
        )
        self.layers = nn.ModuleList(
            [
                Qwen2DecoderLayer(config, layer_idx)
                for layer_idx in range(config.num_hidden_layers)
            ]
        )
        self._attn_implementation = config._attn_implementation
        self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.gradient_checkpointing = False

        if not config.encoder_config:
            raise ValueError("Please provide the encoder config")
        self.encoder_config = Qwen2Config.from_dict(config.encoder_config)
        self.context_encoder = ContextEmbd(
            config=self.encoder_config, context_dim=CONTEXT_EMB, hidden_dim=HIDDEN_EMB
        )

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    # We assume there is only on context, and this function can only support one context
    def get_token_embebddings_context(
        self,
        input_ids: torch.LongTensor,
        context_input_ids: torch.LongTensor,
        context_attention_mask: torch.LongTensor,
    ) -> torch.FloatTensor:
        # The size is batch_size x memory_size x hidden_dim
        context_emb = self.context_encoder(context_input_ids, context_attention_mask)

        # Create embeddings for regular tokens
        embed_input_ids = input_ids.clone()
        embed_input_ids[embed_input_ids < 0] = (
            0  # Replace negative values with 0 for embedding
        )
        hidden_states = self.embed_tokens(embed_input_ids)

        batch_size, seq_len, hidden_dim = hidden_states.shape
        _, memory_size, _ = context_emb.shape

        # Find the start positions of -1 sequences
        mask = input_ids == -1
        starts = torch.where(mask[:, :-1] < mask[:, 1:])[1]

        # Replace -1 spans with context embeddings
        for i in range(batch_size):
            for start in starts:
                if start + memory_size <= seq_len:
                    hidden_states[i, start : start + memory_size] = context_emb[i]

        return hidden_states

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        context_input_ids: Optional[torch.LongTensor] = None,
        context_attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
            )

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        use_legacy_cache = False
        if use_cache and not isinstance(past_key_values, Cache):
            use_legacy_cache = True
            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
            logger.warning_once(
                "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
                "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
            )

        if inputs_embeds is None:
            if context_input_ids is not None:
                assert (
                    context_attention_mask is not None
                ), "You have to provide the context_attention_mask"
                inputs_embeds = self.get_token_embebddings_context(
                    input_ids, context_input_ids, context_attention_mask
                )
            else:
                inputs_embeds = self.embed_tokens(input_ids)

        # We need to update the attention mask if the attention mask is provided
        # if attention_mask is not None:
        #     MEMORY_SIZE = 32
        #     batch_size = inputs_embeds.shape[0]
        #     attention_mask = torch.cat(
        #         (torch.ones(batch_size, MEMORY_SIZE, device=inputs_embeds.device), attention_mask),
        #         dim=1,
        #     ).to(attention_mask.dtype).to(attention_mask.device)

        if cache_position is None:
            past_seen_tokens = (
                past_key_values.get_seq_length() if past_key_values is not None else 0
            )
            cache_position = torch.arange(
                past_seen_tokens,
                past_seen_tokens + inputs_embeds.shape[1],
                device=inputs_embeds.device,
            )
        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        causal_mask = self._update_causal_mask(
            attention_mask,
            inputs_embeds,
            cache_position,
            past_key_values,
            output_attentions,
        )

        hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = None

        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    causal_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                    cache_position,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=causal_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    cache_position=cache_position,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = None
        if use_cache:
            next_cache = (
                next_decoder_cache.to_legacy_cache()
                if use_legacy_cache
                else next_decoder_cache
            )

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
                if v is not None
            )
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

    # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
    def _update_causal_mask(
        self,
        attention_mask: torch.Tensor,
        input_tensor: torch.Tensor,
        cache_position: torch.Tensor,
        past_key_values: Cache,
        output_attentions: bool,
    ):
        # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
        # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
        # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
        # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114

        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and 0.0 in attention_mask:
                return attention_mask
            return None

        # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
        # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
        # to infer the attention mask.
        past_seen_tokens = (
            past_key_values.get_seq_length() if past_key_values is not None else 0
        )
        using_static_cache = isinstance(past_key_values, StaticCache)

        # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
        if (
            self.config._attn_implementation == "sdpa"
            and not using_static_cache
            and not output_attentions
        ):
            if AttentionMaskConverter._ignore_causal_mask_sdpa(
                attention_mask,
                inputs_embeds=input_tensor,
                past_key_values_length=past_seen_tokens,
                is_training=self.training,
            ):
                return None

        dtype, device = input_tensor.dtype, input_tensor.device
        min_dtype = torch.finfo(dtype).min
        sequence_length = input_tensor.shape[1]
        if using_static_cache:
            target_length = past_key_values.get_max_length()
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else past_seen_tokens + sequence_length + 1
            )

        if attention_mask is not None and attention_mask.dim() == 4:
            # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
            if attention_mask.max() != 0:
                raise ValueError(
                    "Custom 4D attention mask should be passed in inverted form with max==0`"
                )
            causal_mask = attention_mask
        else:
            causal_mask = torch.full(
                (sequence_length, target_length),
                fill_value=min_dtype,
                dtype=dtype,
                device=device,
            )
            if sequence_length != 1:
                causal_mask = torch.triu(causal_mask, diagonal=1)
            causal_mask *= torch.arange(
                target_length, device=device
            ) > cache_position.reshape(-1, 1)
            causal_mask = causal_mask[None, None, :, :].expand(
                input_tensor.shape[0], 1, -1, -1
            )
            if attention_mask is not None:
                causal_mask = (
                    causal_mask.clone()
                )  # copy to contiguous memory for in-place edit
                mask_length = attention_mask.shape[-1]
                padding_mask = (
                    causal_mask[:, :, :, :mask_length]
                    + attention_mask[:, None, None, :]
                )
                padding_mask = padding_mask == 0
                causal_mask[:, :, :, :mask_length] = causal_mask[
                    :, :, :, :mask_length
                ].masked_fill(padding_mask, min_dtype)
        if (
            self.config._attn_implementation == "sdpa"
            and attention_mask is not None
            and attention_mask.device.type == "cuda"
            and not output_attentions
        ):
            # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
            # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
            # Details: https://github.com/pytorch/pytorch/issues/110213
            causal_mask = AttentionMaskConverter._unmask_unattended(
                causal_mask, min_dtype
            )

        return causal_mask


class DolphinForCausalLM(Qwen2PreTrainedModel):
    config_class = DolphinConfig
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = DolphinModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        context_input_ids: Optional[torch.LongTensor] = None,
        context_attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
        ```"""

        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            context_input_ids=context_input_ids,
            context_attention_mask=context_attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)
        logits = logits.float()

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        cache_position=None,
        use_cache=True,
        **kwargs,
    ):
        past_length = 0
        # Omit tokens covered by past_key_values
        if past_key_values is not None:
            # Past key values are always initialized with a `Cache` object -> no need for if-else anymore
            past_length = (
                cache_position[0]
                if cache_position is not None
                else past_key_values.get_seq_length()
            )
            max_cache_length = (
                torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
                if past_key_values.get_max_length() is not None
                else None
            )
            cache_length = (
                past_length
                if max_cache_length is None
                else torch.min(max_cache_length, past_length)
            )

            # Keep only the unprocessed tokens:
            # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
            # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
            # input)
            if (
                attention_mask is not None
                and attention_mask.shape[1] > input_ids.shape[1]
            ):
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
            # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
            # input_ids based on the past_length.
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]
            # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

            # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
            if (
                max_cache_length is not None
                and attention_mask is not None
                and cache_length + input_ids.shape[1] > max_cache_length
            ):
                attention_mask = attention_mask[:, -max_cache_length:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_length == 0:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        input_length = (
            position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
        )
        if cache_position is None:
            cache_position = torch.arange(
                past_length, past_length + input_length, device=input_ids.device
            )
        elif use_cache:
            cache_position = cache_position[-input_length:]

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": use_cache,
                "attention_mask": attention_mask,
                "cache_position": cache_position,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(
                    past_state.index_select(0, beam_idx.to(past_state.device))
                    for past_state in layer_past
                ),
            )
        return reordered_past


def inference_instruct(mycontext, question, device="cuda:0"):
    import time
    MEMORY_SIZE = 32
    start_time = time.time()
    generated_token_ids = []
    prompt = f" <context>{question}"
    text_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<context>")]
    input_ids = (
        torch.tensor(
            text_chunks[0] + [-1] * MEMORY_SIZE + text_chunks[1], dtype=torch.long
        )
        .unsqueeze(0)
        .to(device)
    )
    # to process the context
    context_tokenized = tokenizer(
        mycontext + "".join([f"[memory_{i}]" for i in range(MEMORY_SIZE)]),
        return_tensors="pt",
    )
    context_tokenized = {k: v.to(device) for k, v in context_tokenized.items()}
    context_token_count = (context_tokenized["input_ids"]).shape[1] - MEMORY_SIZE
    # We conduct a inference process
    for i in range(context_token_count):
        next_token = (
            model(
                input_ids,
                context_input_ids=context_tokenized["input_ids"],
                context_attention_mask=context_tokenized["attention_mask"],
            )
            .logits[:, -1]
            .argmax(-1)
        )
        if next_token.item() == 151643:
            break
        generated_token_ids.append(next_token.item())
        input_ids = torch.cat([input_ids, next_token.unsqueeze(1)], dim=-1)
    result = tokenizer.decode(generated_token_ids)
    print(f"Time taken: {time.time() - start_time}")
    return result


if __name__ == "__main__":
    # Register your configuration and model
    AutoConfig.register("dolphin", DolphinConfig)
    AutoModelForCausalLM.register(DolphinConfig, DolphinForCausalLM)
    device_name = "cuda:0" if torch.cuda.is_available() else "cpu"

    # Load the tokenizer and model
    tokenizer = AutoTokenizer.from_pretrained('NexaAIDev/Dolphin', trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained('NexaAIDev/Dolphin', trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="cuda:0")
    
    # Run inference example
    mycontext = "Nexa AI is a Cupertino-based company founded in May 2023 that researches and develops models and tools for on-device AI applications. The company is founded by Alex and Zack. The company is known for its Octopus-series models, which rival large-scale language models in capabilities such as function-calling, multimodality, and action-planning, while remaining efficient and compact for edge device deployment. Nexa AI's mission is to advance on-device AI in collaboration with the global developer community. To this end, the company has created an on-device model hub for users to find, share, and collaborate on open-source AI models optimized for edge devices, as well as an SDK for developers to run and deploy AI models locally"
    question = "Who founded Nexa AI?"
    # Pass the context and the correct device string
    result = inference_instruct(mycontext, question, device=device_name)
    print("Result:", result)