upload registration code
Browse files- configuration_dolphin.py +218 -0
- modeling_dolphin.py +735 -0
configuration_dolphin.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Qwen2 model configuration"""
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
# We can also consider to pass the encoder config dict to the Qwen2Config config as well.
|
23 |
+
encoder_config_dict = {
|
24 |
+
"_name_or_path": "alexchen4ai/Qwen2-0.5B",
|
25 |
+
"add_cross_attention": False,
|
26 |
+
"architectures": ["Qwen2ForCausalLM"],
|
27 |
+
"attention_dropout": 0.0,
|
28 |
+
"bad_words_ids": None,
|
29 |
+
"begin_suppress_tokens": None,
|
30 |
+
"bos_token_id": 151643,
|
31 |
+
"chunk_size_feed_forward": 0,
|
32 |
+
"cross_attention_hidden_size": None,
|
33 |
+
"decoder_start_token_id": None,
|
34 |
+
"diversity_penalty": 0.0,
|
35 |
+
"do_sample": False,
|
36 |
+
"early_stopping": False,
|
37 |
+
"encoder_config": None,
|
38 |
+
"encoder_no_repeat_ngram_size": 0,
|
39 |
+
"eos_token_id": 151643,
|
40 |
+
"exponential_decay_length_penalty": None,
|
41 |
+
"finetuning_task": None,
|
42 |
+
"forced_bos_token_id": None,
|
43 |
+
"forced_eos_token_id": None,
|
44 |
+
"hidden_act": "silu",
|
45 |
+
"hidden_size": 896,
|
46 |
+
"id2label": {"0": "LABEL_0", "1": "LABEL_1"},
|
47 |
+
"initializer_range": 0.02,
|
48 |
+
"intermediate_size": 4864,
|
49 |
+
"is_decoder": False,
|
50 |
+
"is_encoder_decoder": False,
|
51 |
+
"label2id": {"LABEL_0": 0, "LABEL_1": 1},
|
52 |
+
"length_penalty": 1.0,
|
53 |
+
"max_length": 20,
|
54 |
+
"max_position_embeddings": 131072,
|
55 |
+
"max_window_layers": 24,
|
56 |
+
"min_length": 0,
|
57 |
+
"model_type": "qwen2",
|
58 |
+
"no_repeat_ngram_size": 0,
|
59 |
+
"num_attention_heads": 14,
|
60 |
+
"num_beam_groups": 1,
|
61 |
+
"num_beams": 1,
|
62 |
+
"num_hidden_layers": 24,
|
63 |
+
"num_key_value_heads": 2,
|
64 |
+
"num_return_sequences": 1,
|
65 |
+
"output_attentions": False,
|
66 |
+
"output_hidden_states": False,
|
67 |
+
"output_scores": False,
|
68 |
+
"pad_token_id": None,
|
69 |
+
"prefix": None,
|
70 |
+
"problem_type": None,
|
71 |
+
"pruned_heads": {},
|
72 |
+
"remove_invalid_values": False,
|
73 |
+
"repetition_penalty": 1.0,
|
74 |
+
"return_dict": True,
|
75 |
+
"return_dict_in_generate": False,
|
76 |
+
"rms_norm_eps": 1e-06,
|
77 |
+
"rope_theta": 1000000.0,
|
78 |
+
"sep_token_id": None,
|
79 |
+
"sliding_window": 131072,
|
80 |
+
"suppress_tokens": None,
|
81 |
+
"task_specific_params": None,
|
82 |
+
"temperature": 1.0,
|
83 |
+
"tf_legacy_loss": False,
|
84 |
+
"tie_encoder_decoder": False,
|
85 |
+
"tie_word_embeddings": True,
|
86 |
+
"tokenizer_class": None,
|
87 |
+
"top_k": 50,
|
88 |
+
"top_p": 1.0,
|
89 |
+
"torch_dtype": "bfloat16",
|
90 |
+
"torchscript": False,
|
91 |
+
"typical_p": 1.0,
|
92 |
+
"use_bfloat16": False,
|
93 |
+
"use_cache": True,
|
94 |
+
"use_sliding_window": False,
|
95 |
+
"vocab_size": 151936,
|
96 |
+
"attn_implementation": None,
|
97 |
+
}
|
98 |
+
|
99 |
+
|
100 |
+
class Qwen2Config(PretrainedConfig):
|
101 |
+
r"""
|
102 |
+
This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
|
103 |
+
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
104 |
+
with the defaults will yield a similar configuration to that of
|
105 |
+
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
|
106 |
+
|
107 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
108 |
+
documentation from [`PretrainedConfig`] for more information.
|
109 |
+
|
110 |
+
|
111 |
+
Args:
|
112 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
113 |
+
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
|
114 |
+
`inputs_ids` passed when calling [`Qwen2Model`]
|
115 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
116 |
+
Dimension of the hidden representations.
|
117 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
118 |
+
Dimension of the MLP representations.
|
119 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
120 |
+
Number of hidden layers in the Transformer encoder.
|
121 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
122 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
123 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
124 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
125 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
126 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
127 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
128 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
129 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
130 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
131 |
+
The non-linear activation function (function or string) in the decoder.
|
132 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
133 |
+
The maximum sequence length that this model might ever be used with.
|
134 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
135 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
136 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
137 |
+
The epsilon used by the rms normalization layers.
|
138 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
139 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
140 |
+
relevant if `config.is_decoder=True`.
|
141 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
142 |
+
Whether the model's input and output word embeddings should be tied.
|
143 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
144 |
+
The base period of the RoPE embeddings.
|
145 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
146 |
+
Whether to use sliding window attention.
|
147 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
148 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
149 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
150 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
151 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
152 |
+
The dropout ratio for the attention probabilities.
|
153 |
+
|
154 |
+
```python
|
155 |
+
>>> from transformers import Qwen2Model, Qwen2Config
|
156 |
+
|
157 |
+
>>> # Initializing a Qwen2 style configuration
|
158 |
+
>>> configuration = Qwen2Config()
|
159 |
+
|
160 |
+
>>> # Initializing a model from the Qwen2-7B style configuration
|
161 |
+
>>> model = Qwen2Model(configuration)
|
162 |
+
|
163 |
+
>>> # Accessing the model configuration
|
164 |
+
>>> configuration = model.config
|
165 |
+
```"""
|
166 |
+
|
167 |
+
model_type = "qwen2"
|
168 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
169 |
+
|
170 |
+
def __init__(
|
171 |
+
self,
|
172 |
+
vocab_size=151936,
|
173 |
+
hidden_size=4096,
|
174 |
+
intermediate_size=22016,
|
175 |
+
num_hidden_layers=32,
|
176 |
+
num_attention_heads=32,
|
177 |
+
num_key_value_heads=32,
|
178 |
+
hidden_act="silu",
|
179 |
+
max_position_embeddings=32768,
|
180 |
+
initializer_range=0.02,
|
181 |
+
rms_norm_eps=1e-6,
|
182 |
+
use_cache=True,
|
183 |
+
tie_word_embeddings=False,
|
184 |
+
rope_theta=10000.0,
|
185 |
+
use_sliding_window=False,
|
186 |
+
sliding_window=4096,
|
187 |
+
max_window_layers=28,
|
188 |
+
attention_dropout=0.0,
|
189 |
+
encoder_config=None,
|
190 |
+
**kwargs,
|
191 |
+
):
|
192 |
+
self.vocab_size = vocab_size
|
193 |
+
self.max_position_embeddings = max_position_embeddings
|
194 |
+
self.hidden_size = hidden_size
|
195 |
+
self.intermediate_size = intermediate_size
|
196 |
+
self.num_hidden_layers = num_hidden_layers
|
197 |
+
self.num_attention_heads = num_attention_heads
|
198 |
+
self.use_sliding_window = use_sliding_window
|
199 |
+
self.sliding_window = sliding_window
|
200 |
+
self.max_window_layers = max_window_layers
|
201 |
+
|
202 |
+
# for backward compatibility
|
203 |
+
if num_key_value_heads is None:
|
204 |
+
num_key_value_heads = num_attention_heads
|
205 |
+
|
206 |
+
self.num_key_value_heads = num_key_value_heads
|
207 |
+
self.hidden_act = hidden_act
|
208 |
+
self.initializer_range = initializer_range
|
209 |
+
self.rms_norm_eps = rms_norm_eps
|
210 |
+
self.use_cache = use_cache
|
211 |
+
self.rope_theta = rope_theta
|
212 |
+
self.attention_dropout = attention_dropout
|
213 |
+
self.encoder_config = encoder_config
|
214 |
+
|
215 |
+
super().__init__(
|
216 |
+
tie_word_embeddings=tie_word_embeddings,
|
217 |
+
**kwargs,
|
218 |
+
)
|
modeling_dolphin.py
ADDED
@@ -0,0 +1,735 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import (
|
2 |
+
AutoTokenizer, AutoModelForCausalLM, AutoConfig, logging
|
3 |
+
)
|
4 |
+
from transformers.modeling_outputs import (
|
5 |
+
BaseModelOutputWithPast,
|
6 |
+
CausalLMOutputWithPast,
|
7 |
+
SequenceClassifierOutputWithPast,
|
8 |
+
)
|
9 |
+
from transformers.utils import (ModelOutput)
|
10 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
11 |
+
from transformers.models.qwen2.modeling_qwen2 import (
|
12 |
+
Qwen2PreTrainedModel, Qwen2Model, Qwen2RMSNorm
|
13 |
+
)
|
14 |
+
from transformers.models.qwen2.modeling_qwen2 import Qwen2DecoderLayer
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
from typing import List, Optional, Tuple, Union
|
18 |
+
import warnings
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from torch.nn import CrossEntropyLoss
|
21 |
+
from .configuration_dolphin import encoder_config_dict, Qwen2Config
|
22 |
+
|
23 |
+
CONTEXT_EMB = 896 # Qwen 0.7B has dimension of 896
|
24 |
+
HIDDEN_EMB = 3584 # Qwen 7B has dimension of 3584
|
25 |
+
warnings.filterwarnings("ignore")
|
26 |
+
MEM_SIZE = 32
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
@dataclass
|
30 |
+
class DolphinMemoryOutput(ModelOutput):
|
31 |
+
memory_states: Optional[torch.FloatTensor] = None
|
32 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
33 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
34 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
35 |
+
|
36 |
+
class Qwen2ForMemoryOutput(Qwen2PreTrainedModel):
|
37 |
+
def __init__(self, config):
|
38 |
+
super().__init__(config)
|
39 |
+
self.num_labels = config.num_labels
|
40 |
+
self.model = Qwen2Model(config)
|
41 |
+
self.model.config.pad_token_id = self.model.config.eos_token_id
|
42 |
+
|
43 |
+
# Initialize weights and apply final processing
|
44 |
+
self.post_init()
|
45 |
+
|
46 |
+
def get_input_embeddings(self):
|
47 |
+
return self.model.embed_tokens
|
48 |
+
|
49 |
+
def set_input_embeddings(self, value):
|
50 |
+
self.model.embed_tokens = value
|
51 |
+
|
52 |
+
def forward(
|
53 |
+
self,
|
54 |
+
input_ids: torch.LongTensor = None,
|
55 |
+
attention_mask: Optional[torch.Tensor] = None,
|
56 |
+
position_ids: Optional[torch.LongTensor] = None,
|
57 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
58 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
59 |
+
labels: Optional[torch.LongTensor] = None,
|
60 |
+
use_cache: Optional[bool] = None,
|
61 |
+
output_attentions: Optional[bool] = None,
|
62 |
+
output_hidden_states: Optional[bool] = None,
|
63 |
+
return_dict: Optional[bool] = None,
|
64 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
65 |
+
r"""
|
66 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
67 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
68 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
69 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
70 |
+
"""
|
71 |
+
return_dict = (
|
72 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
73 |
+
)
|
74 |
+
transformer_outputs = self.model(
|
75 |
+
input_ids,
|
76 |
+
attention_mask=attention_mask,
|
77 |
+
position_ids=position_ids,
|
78 |
+
past_key_values=past_key_values,
|
79 |
+
inputs_embeds=inputs_embeds,
|
80 |
+
use_cache=use_cache,
|
81 |
+
output_attentions=output_attentions,
|
82 |
+
output_hidden_states=output_hidden_states,
|
83 |
+
return_dict=return_dict,
|
84 |
+
)
|
85 |
+
hidden_states = transformer_outputs[0]
|
86 |
+
|
87 |
+
if input_ids is not None:
|
88 |
+
batch_size = input_ids.shape[0]
|
89 |
+
else:
|
90 |
+
batch_size = inputs_embeds.shape[0]
|
91 |
+
|
92 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
93 |
+
raise ValueError(
|
94 |
+
"Cannot handle batch sizes > 1 if no padding token is defined."
|
95 |
+
)
|
96 |
+
if self.config.pad_token_id is None:
|
97 |
+
sequence_lengths = -1
|
98 |
+
else:
|
99 |
+
if input_ids is not None:
|
100 |
+
sequence_lengths = (
|
101 |
+
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1)
|
102 |
+
)
|
103 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
104 |
+
sequence_lengths = sequence_lengths.to(hidden_states.device)
|
105 |
+
else:
|
106 |
+
sequence_lengths = -1
|
107 |
+
|
108 |
+
# if sequence_lengths != -1:
|
109 |
+
# assert (sequence_lengths > MEMORY_SIZE).all(), "All sequences must be longer than MEMORY_SIZE"
|
110 |
+
|
111 |
+
MEMORY_SIZE = 32
|
112 |
+
batch_range = torch.arange(batch_size, device=hidden_states.device)
|
113 |
+
start_indices = sequence_lengths - MEMORY_SIZE
|
114 |
+
# print(sequence_lengths)
|
115 |
+
# print(torch.arange(MEMORY_SIZE, device=hidden_states.device)[None, :] + start_indices[:, None])
|
116 |
+
memory_states = hidden_states[
|
117 |
+
batch_range[:, None],
|
118 |
+
torch.arange(MEMORY_SIZE, device=hidden_states.device)[None, :]
|
119 |
+
+ start_indices[:, None],
|
120 |
+
]
|
121 |
+
|
122 |
+
return DolphinMemoryOutput(
|
123 |
+
memory_states=memory_states,
|
124 |
+
past_key_values=transformer_outputs.past_key_values,
|
125 |
+
hidden_states=transformer_outputs.hidden_states,
|
126 |
+
attentions=transformer_outputs.attentions,
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
class Projector(nn.Module):
|
131 |
+
def __init__(self, context_dim: int, hidden_dim: int, projection_cls="linear"):
|
132 |
+
super().__init__()
|
133 |
+
self.projection_cls = projection_cls
|
134 |
+
if projection_cls == "linear":
|
135 |
+
self.context_projection = nn.Linear(context_dim, hidden_dim)
|
136 |
+
elif projection_cls == "mlp":
|
137 |
+
dim_projection = hidden_dim
|
138 |
+
depth = 2
|
139 |
+
layers = [
|
140 |
+
nn.Linear(context_dim, dim_projection),
|
141 |
+
]
|
142 |
+
for _ in range(1, depth):
|
143 |
+
layers.extend(
|
144 |
+
[
|
145 |
+
nn.GELU(),
|
146 |
+
nn.Linear(dim_projection, dim_projection),
|
147 |
+
]
|
148 |
+
)
|
149 |
+
self.context_projection = nn.Sequential(*layers)
|
150 |
+
else:
|
151 |
+
raise ValueError(f"Projection class {projection_cls} not supported")
|
152 |
+
|
153 |
+
def forward(self, x):
|
154 |
+
if self.projection_cls == "linear":
|
155 |
+
return self.context_projection(x)
|
156 |
+
|
157 |
+
for layer in self.context_projection:
|
158 |
+
x = layer(x)
|
159 |
+
return x
|
160 |
+
|
161 |
+
class ContextEmbd(nn.Module):
|
162 |
+
def __init__(
|
163 |
+
self, config, context_dim, hidden_dim, MEM_SIZE=32, torch_dtype=torch.bfloat16
|
164 |
+
):
|
165 |
+
super().__init__()
|
166 |
+
self.encoder = Qwen2ForMemoryOutput(config).to(torch_dtype)
|
167 |
+
self.projector = Projector(context_dim, hidden_dim).to(torch_dtype)
|
168 |
+
self.MEM_SIZE = MEM_SIZE
|
169 |
+
|
170 |
+
def forward(self, context_input_ids, context_attention_mask=None):
|
171 |
+
memory_slot = self.encoder(
|
172 |
+
context_input_ids, context_attention_mask, output_hidden_states=True
|
173 |
+
).memory_states
|
174 |
+
|
175 |
+
# now project the memory slot into token space
|
176 |
+
return self.projector(memory_slot)
|
177 |
+
|
178 |
+
class DolphinModel(Qwen2PreTrainedModel):
|
179 |
+
"""
|
180 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
|
181 |
+
|
182 |
+
Args:
|
183 |
+
config: DolphinModel
|
184 |
+
"""
|
185 |
+
|
186 |
+
def __init__(self, config: Qwen2Config):
|
187 |
+
super().__init__(config)
|
188 |
+
self.padding_idx = config.pad_token_id
|
189 |
+
self.vocab_size = config.vocab_size
|
190 |
+
|
191 |
+
self.embed_tokens = nn.Embedding(
|
192 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
193 |
+
)
|
194 |
+
self.layers = nn.ModuleList(
|
195 |
+
[
|
196 |
+
Qwen2DecoderLayer(config, layer_idx)
|
197 |
+
for layer_idx in range(config.num_hidden_layers)
|
198 |
+
]
|
199 |
+
)
|
200 |
+
self._attn_implementation = config._attn_implementation
|
201 |
+
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
202 |
+
self.gradient_checkpointing = False
|
203 |
+
|
204 |
+
if not config.encoder_config:
|
205 |
+
raise ValueError("Please provide the encoder config")
|
206 |
+
self.encoder_config = Qwen2Config.from_dict(config.encoder_config)
|
207 |
+
self.context_encoder = ContextEmbd(
|
208 |
+
config=self.encoder_config, context_dim=CONTEXT_EMB, hidden_dim=HIDDEN_EMB
|
209 |
+
)
|
210 |
+
|
211 |
+
# Initialize weights and apply final processing
|
212 |
+
self.post_init()
|
213 |
+
|
214 |
+
def get_input_embeddings(self):
|
215 |
+
return self.embed_tokens
|
216 |
+
|
217 |
+
def set_input_embeddings(self, value):
|
218 |
+
self.embed_tokens = value
|
219 |
+
|
220 |
+
# We assume there is only on context, and this function can only support one context
|
221 |
+
def get_token_embebddings_context(
|
222 |
+
self,
|
223 |
+
input_ids: torch.LongTensor,
|
224 |
+
context_input_ids: torch.LongTensor,
|
225 |
+
context_attention_mask: torch.LongTensor,
|
226 |
+
) -> torch.FloatTensor:
|
227 |
+
# The size is batch_size x memory_size x hidden_dim
|
228 |
+
context_emb = self.context_encoder(context_input_ids, context_attention_mask)
|
229 |
+
|
230 |
+
# Create embeddings for regular tokens
|
231 |
+
embed_input_ids = input_ids.clone()
|
232 |
+
embed_input_ids[embed_input_ids < 0] = (
|
233 |
+
0 # Replace negative values with 0 for embedding
|
234 |
+
)
|
235 |
+
hidden_states = self.embed_tokens(embed_input_ids)
|
236 |
+
|
237 |
+
batch_size, seq_len, hidden_dim = hidden_states.shape
|
238 |
+
_, memory_size, _ = context_emb.shape
|
239 |
+
|
240 |
+
# Find the start positions of -1 sequences
|
241 |
+
mask = input_ids == -1
|
242 |
+
starts = torch.where(mask[:, :-1] < mask[:, 1:])[1]
|
243 |
+
|
244 |
+
# Replace -1 spans with context embeddings
|
245 |
+
for i in range(batch_size):
|
246 |
+
for start in starts:
|
247 |
+
if start + memory_size <= seq_len:
|
248 |
+
hidden_states[i, start : start + memory_size] = context_emb[i]
|
249 |
+
|
250 |
+
return hidden_states
|
251 |
+
|
252 |
+
def forward(
|
253 |
+
self,
|
254 |
+
input_ids: torch.LongTensor = None,
|
255 |
+
attention_mask: Optional[torch.Tensor] = None,
|
256 |
+
context_input_ids: Optional[torch.LongTensor] = None,
|
257 |
+
context_attention_mask: Optional[torch.Tensor] = None,
|
258 |
+
position_ids: Optional[torch.LongTensor] = None,
|
259 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
260 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
261 |
+
use_cache: Optional[bool] = None,
|
262 |
+
output_attentions: Optional[bool] = None,
|
263 |
+
output_hidden_states: Optional[bool] = None,
|
264 |
+
return_dict: Optional[bool] = None,
|
265 |
+
cache_position: Optional[torch.LongTensor] = None,
|
266 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
267 |
+
output_attentions = (
|
268 |
+
output_attentions
|
269 |
+
if output_attentions is not None
|
270 |
+
else self.config.output_attentions
|
271 |
+
)
|
272 |
+
output_hidden_states = (
|
273 |
+
output_hidden_states
|
274 |
+
if output_hidden_states is not None
|
275 |
+
else self.config.output_hidden_states
|
276 |
+
)
|
277 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
278 |
+
|
279 |
+
return_dict = (
|
280 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
281 |
+
)
|
282 |
+
|
283 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
284 |
+
raise ValueError(
|
285 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
286 |
+
)
|
287 |
+
|
288 |
+
if self.gradient_checkpointing and self.training:
|
289 |
+
if use_cache:
|
290 |
+
logger.warning_once(
|
291 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
292 |
+
)
|
293 |
+
use_cache = False
|
294 |
+
|
295 |
+
use_legacy_cache = False
|
296 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
297 |
+
use_legacy_cache = True
|
298 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
299 |
+
logger.warning_once(
|
300 |
+
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
|
301 |
+
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
|
302 |
+
)
|
303 |
+
|
304 |
+
if inputs_embeds is None:
|
305 |
+
if context_input_ids is not None:
|
306 |
+
assert (
|
307 |
+
context_attention_mask is not None
|
308 |
+
), "You have to provide the context_attention_mask"
|
309 |
+
inputs_embeds = self.get_token_embebddings_context(
|
310 |
+
input_ids, context_input_ids, context_attention_mask
|
311 |
+
)
|
312 |
+
else:
|
313 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
314 |
+
|
315 |
+
# We need to update the attention mask if the attention mask is provided
|
316 |
+
# if attention_mask is not None:
|
317 |
+
# MEMORY_SIZE = 32
|
318 |
+
# batch_size = inputs_embeds.shape[0]
|
319 |
+
# attention_mask = torch.cat(
|
320 |
+
# (torch.ones(batch_size, MEMORY_SIZE, device=inputs_embeds.device), attention_mask),
|
321 |
+
# dim=1,
|
322 |
+
# ).to(attention_mask.dtype).to(attention_mask.device)
|
323 |
+
|
324 |
+
if cache_position is None:
|
325 |
+
past_seen_tokens = (
|
326 |
+
past_key_values.get_seq_length() if past_key_values is not None else 0
|
327 |
+
)
|
328 |
+
cache_position = torch.arange(
|
329 |
+
past_seen_tokens,
|
330 |
+
past_seen_tokens + inputs_embeds.shape[1],
|
331 |
+
device=inputs_embeds.device,
|
332 |
+
)
|
333 |
+
if position_ids is None:
|
334 |
+
position_ids = cache_position.unsqueeze(0)
|
335 |
+
|
336 |
+
causal_mask = self._update_causal_mask(
|
337 |
+
attention_mask,
|
338 |
+
inputs_embeds,
|
339 |
+
cache_position,
|
340 |
+
past_key_values,
|
341 |
+
output_attentions,
|
342 |
+
)
|
343 |
+
|
344 |
+
hidden_states = inputs_embeds
|
345 |
+
|
346 |
+
# decoder layers
|
347 |
+
all_hidden_states = () if output_hidden_states else None
|
348 |
+
all_self_attns = () if output_attentions else None
|
349 |
+
next_decoder_cache = None
|
350 |
+
|
351 |
+
for decoder_layer in self.layers:
|
352 |
+
if output_hidden_states:
|
353 |
+
all_hidden_states += (hidden_states,)
|
354 |
+
|
355 |
+
if self.gradient_checkpointing and self.training:
|
356 |
+
layer_outputs = self._gradient_checkpointing_func(
|
357 |
+
decoder_layer.__call__,
|
358 |
+
hidden_states,
|
359 |
+
causal_mask,
|
360 |
+
position_ids,
|
361 |
+
past_key_values,
|
362 |
+
output_attentions,
|
363 |
+
use_cache,
|
364 |
+
cache_position,
|
365 |
+
)
|
366 |
+
else:
|
367 |
+
layer_outputs = decoder_layer(
|
368 |
+
hidden_states,
|
369 |
+
attention_mask=causal_mask,
|
370 |
+
position_ids=position_ids,
|
371 |
+
past_key_value=past_key_values,
|
372 |
+
output_attentions=output_attentions,
|
373 |
+
use_cache=use_cache,
|
374 |
+
cache_position=cache_position,
|
375 |
+
)
|
376 |
+
|
377 |
+
hidden_states = layer_outputs[0]
|
378 |
+
|
379 |
+
if use_cache:
|
380 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
381 |
+
|
382 |
+
if output_attentions:
|
383 |
+
all_self_attns += (layer_outputs[1],)
|
384 |
+
|
385 |
+
hidden_states = self.norm(hidden_states)
|
386 |
+
|
387 |
+
# add hidden states from the last decoder layer
|
388 |
+
if output_hidden_states:
|
389 |
+
all_hidden_states += (hidden_states,)
|
390 |
+
|
391 |
+
next_cache = None
|
392 |
+
if use_cache:
|
393 |
+
next_cache = (
|
394 |
+
next_decoder_cache.to_legacy_cache()
|
395 |
+
if use_legacy_cache
|
396 |
+
else next_decoder_cache
|
397 |
+
)
|
398 |
+
|
399 |
+
if not return_dict:
|
400 |
+
return tuple(
|
401 |
+
v
|
402 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
403 |
+
if v is not None
|
404 |
+
)
|
405 |
+
return BaseModelOutputWithPast(
|
406 |
+
last_hidden_state=hidden_states,
|
407 |
+
past_key_values=next_cache,
|
408 |
+
hidden_states=all_hidden_states,
|
409 |
+
attentions=all_self_attns,
|
410 |
+
)
|
411 |
+
|
412 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
|
413 |
+
def _update_causal_mask(
|
414 |
+
self,
|
415 |
+
attention_mask: torch.Tensor,
|
416 |
+
input_tensor: torch.Tensor,
|
417 |
+
cache_position: torch.Tensor,
|
418 |
+
past_key_values: Cache,
|
419 |
+
output_attentions: bool,
|
420 |
+
):
|
421 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
422 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
423 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
424 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
425 |
+
|
426 |
+
if self.config._attn_implementation == "flash_attention_2":
|
427 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
428 |
+
return attention_mask
|
429 |
+
return None
|
430 |
+
|
431 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
432 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
433 |
+
# to infer the attention mask.
|
434 |
+
past_seen_tokens = (
|
435 |
+
past_key_values.get_seq_length() if past_key_values is not None else 0
|
436 |
+
)
|
437 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
438 |
+
|
439 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
440 |
+
if (
|
441 |
+
self.config._attn_implementation == "sdpa"
|
442 |
+
and not using_static_cache
|
443 |
+
and not output_attentions
|
444 |
+
):
|
445 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
446 |
+
attention_mask,
|
447 |
+
inputs_embeds=input_tensor,
|
448 |
+
past_key_values_length=past_seen_tokens,
|
449 |
+
is_training=self.training,
|
450 |
+
):
|
451 |
+
return None
|
452 |
+
|
453 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
454 |
+
min_dtype = torch.finfo(dtype).min
|
455 |
+
sequence_length = input_tensor.shape[1]
|
456 |
+
if using_static_cache:
|
457 |
+
target_length = past_key_values.get_max_length()
|
458 |
+
else:
|
459 |
+
target_length = (
|
460 |
+
attention_mask.shape[-1]
|
461 |
+
if isinstance(attention_mask, torch.Tensor)
|
462 |
+
else past_seen_tokens + sequence_length + 1
|
463 |
+
)
|
464 |
+
|
465 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
466 |
+
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
|
467 |
+
if attention_mask.max() != 0:
|
468 |
+
raise ValueError(
|
469 |
+
"Custom 4D attention mask should be passed in inverted form with max==0`"
|
470 |
+
)
|
471 |
+
causal_mask = attention_mask
|
472 |
+
else:
|
473 |
+
causal_mask = torch.full(
|
474 |
+
(sequence_length, target_length),
|
475 |
+
fill_value=min_dtype,
|
476 |
+
dtype=dtype,
|
477 |
+
device=device,
|
478 |
+
)
|
479 |
+
if sequence_length != 1:
|
480 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
481 |
+
causal_mask *= torch.arange(
|
482 |
+
target_length, device=device
|
483 |
+
) > cache_position.reshape(-1, 1)
|
484 |
+
causal_mask = causal_mask[None, None, :, :].expand(
|
485 |
+
input_tensor.shape[0], 1, -1, -1
|
486 |
+
)
|
487 |
+
if attention_mask is not None:
|
488 |
+
causal_mask = (
|
489 |
+
causal_mask.clone()
|
490 |
+
) # copy to contiguous memory for in-place edit
|
491 |
+
mask_length = attention_mask.shape[-1]
|
492 |
+
padding_mask = (
|
493 |
+
causal_mask[:, :, :, :mask_length]
|
494 |
+
+ attention_mask[:, None, None, :]
|
495 |
+
)
|
496 |
+
padding_mask = padding_mask == 0
|
497 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[
|
498 |
+
:, :, :, :mask_length
|
499 |
+
].masked_fill(padding_mask, min_dtype)
|
500 |
+
if (
|
501 |
+
self.config._attn_implementation == "sdpa"
|
502 |
+
and attention_mask is not None
|
503 |
+
and attention_mask.device.type == "cuda"
|
504 |
+
and not output_attentions
|
505 |
+
):
|
506 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
507 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
508 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
509 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(
|
510 |
+
causal_mask, min_dtype
|
511 |
+
)
|
512 |
+
|
513 |
+
return causal_mask
|
514 |
+
|
515 |
+
|
516 |
+
class DolphinForCausalLM(Qwen2PreTrainedModel):
|
517 |
+
_tied_weights_keys = ["lm_head.weight"]
|
518 |
+
|
519 |
+
def __init__(self, config):
|
520 |
+
super().__init__(config)
|
521 |
+
self.model = DolphinModel(config)
|
522 |
+
self.vocab_size = config.vocab_size
|
523 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
524 |
+
|
525 |
+
# Initialize weights and apply final processing
|
526 |
+
self.post_init()
|
527 |
+
|
528 |
+
def get_input_embeddings(self):
|
529 |
+
return self.model.embed_tokens
|
530 |
+
|
531 |
+
def set_input_embeddings(self, value):
|
532 |
+
self.model.embed_tokens = value
|
533 |
+
|
534 |
+
def get_output_embeddings(self):
|
535 |
+
return self.lm_head
|
536 |
+
|
537 |
+
def set_output_embeddings(self, new_embeddings):
|
538 |
+
self.lm_head = new_embeddings
|
539 |
+
|
540 |
+
def set_decoder(self, decoder):
|
541 |
+
self.model = decoder
|
542 |
+
|
543 |
+
def get_decoder(self):
|
544 |
+
return self.model
|
545 |
+
|
546 |
+
def forward(
|
547 |
+
self,
|
548 |
+
input_ids: torch.LongTensor = None,
|
549 |
+
attention_mask: Optional[torch.Tensor] = None,
|
550 |
+
context_input_ids: Optional[torch.LongTensor] = None,
|
551 |
+
context_attention_mask: Optional[torch.Tensor] = None,
|
552 |
+
position_ids: Optional[torch.LongTensor] = None,
|
553 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
554 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
555 |
+
labels: Optional[torch.LongTensor] = None,
|
556 |
+
use_cache: Optional[bool] = None,
|
557 |
+
output_attentions: Optional[bool] = None,
|
558 |
+
output_hidden_states: Optional[bool] = None,
|
559 |
+
return_dict: Optional[bool] = None,
|
560 |
+
cache_position: Optional[torch.LongTensor] = None,
|
561 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
562 |
+
r"""
|
563 |
+
Args:
|
564 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
565 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
566 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
567 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
568 |
+
```"""
|
569 |
+
|
570 |
+
output_attentions = (
|
571 |
+
output_attentions
|
572 |
+
if output_attentions is not None
|
573 |
+
else self.config.output_attentions
|
574 |
+
)
|
575 |
+
output_hidden_states = (
|
576 |
+
output_hidden_states
|
577 |
+
if output_hidden_states is not None
|
578 |
+
else self.config.output_hidden_states
|
579 |
+
)
|
580 |
+
return_dict = (
|
581 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
582 |
+
)
|
583 |
+
|
584 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
585 |
+
outputs = self.model(
|
586 |
+
input_ids=input_ids,
|
587 |
+
attention_mask=attention_mask,
|
588 |
+
context_input_ids=context_input_ids,
|
589 |
+
context_attention_mask=context_attention_mask,
|
590 |
+
position_ids=position_ids,
|
591 |
+
past_key_values=past_key_values,
|
592 |
+
inputs_embeds=inputs_embeds,
|
593 |
+
use_cache=use_cache,
|
594 |
+
output_attentions=output_attentions,
|
595 |
+
output_hidden_states=output_hidden_states,
|
596 |
+
return_dict=return_dict,
|
597 |
+
cache_position=cache_position,
|
598 |
+
)
|
599 |
+
|
600 |
+
hidden_states = outputs[0]
|
601 |
+
logits = self.lm_head(hidden_states)
|
602 |
+
logits = logits.float()
|
603 |
+
|
604 |
+
loss = None
|
605 |
+
if labels is not None:
|
606 |
+
# Shift so that tokens < n predict n
|
607 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
608 |
+
shift_labels = labels[..., 1:].contiguous()
|
609 |
+
# Flatten the tokens
|
610 |
+
loss_fct = CrossEntropyLoss()
|
611 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
612 |
+
shift_labels = shift_labels.view(-1)
|
613 |
+
# Enable model parallelism
|
614 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
615 |
+
loss = loss_fct(shift_logits, shift_labels)
|
616 |
+
|
617 |
+
if not return_dict:
|
618 |
+
output = (logits,) + outputs[1:]
|
619 |
+
return (loss,) + output if loss is not None else output
|
620 |
+
|
621 |
+
return CausalLMOutputWithPast(
|
622 |
+
loss=loss,
|
623 |
+
logits=logits,
|
624 |
+
past_key_values=outputs.past_key_values,
|
625 |
+
hidden_states=outputs.hidden_states,
|
626 |
+
attentions=outputs.attentions,
|
627 |
+
)
|
628 |
+
|
629 |
+
def prepare_inputs_for_generation(
|
630 |
+
self,
|
631 |
+
input_ids,
|
632 |
+
past_key_values=None,
|
633 |
+
attention_mask=None,
|
634 |
+
inputs_embeds=None,
|
635 |
+
cache_position=None,
|
636 |
+
use_cache=True,
|
637 |
+
**kwargs,
|
638 |
+
):
|
639 |
+
past_length = 0
|
640 |
+
# Omit tokens covered by past_key_values
|
641 |
+
if past_key_values is not None:
|
642 |
+
# Past key values are always initialized with a `Cache` object -> no need for if-else anymore
|
643 |
+
past_length = (
|
644 |
+
cache_position[0]
|
645 |
+
if cache_position is not None
|
646 |
+
else past_key_values.get_seq_length()
|
647 |
+
)
|
648 |
+
max_cache_length = (
|
649 |
+
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
|
650 |
+
if past_key_values.get_max_length() is not None
|
651 |
+
else None
|
652 |
+
)
|
653 |
+
cache_length = (
|
654 |
+
past_length
|
655 |
+
if max_cache_length is None
|
656 |
+
else torch.min(max_cache_length, past_length)
|
657 |
+
)
|
658 |
+
|
659 |
+
# Keep only the unprocessed tokens:
|
660 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
661 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
662 |
+
# input)
|
663 |
+
if (
|
664 |
+
attention_mask is not None
|
665 |
+
and attention_mask.shape[1] > input_ids.shape[1]
|
666 |
+
):
|
667 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
668 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
669 |
+
# input_ids based on the past_length.
|
670 |
+
elif past_length < input_ids.shape[1]:
|
671 |
+
input_ids = input_ids[:, past_length:]
|
672 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
673 |
+
|
674 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
675 |
+
if (
|
676 |
+
max_cache_length is not None
|
677 |
+
and attention_mask is not None
|
678 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
679 |
+
):
|
680 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
681 |
+
|
682 |
+
position_ids = kwargs.get("position_ids", None)
|
683 |
+
if attention_mask is not None and position_ids is None:
|
684 |
+
# create position_ids on the fly for batch generation
|
685 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
686 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
687 |
+
if past_key_values:
|
688 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
689 |
+
|
690 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
691 |
+
if inputs_embeds is not None and past_length == 0:
|
692 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
693 |
+
else:
|
694 |
+
model_inputs = {"input_ids": input_ids}
|
695 |
+
|
696 |
+
input_length = (
|
697 |
+
position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
698 |
+
)
|
699 |
+
if cache_position is None:
|
700 |
+
cache_position = torch.arange(
|
701 |
+
past_length, past_length + input_length, device=input_ids.device
|
702 |
+
)
|
703 |
+
elif use_cache:
|
704 |
+
cache_position = cache_position[-input_length:]
|
705 |
+
|
706 |
+
model_inputs.update(
|
707 |
+
{
|
708 |
+
"position_ids": position_ids,
|
709 |
+
"past_key_values": past_key_values,
|
710 |
+
"use_cache": use_cache,
|
711 |
+
"attention_mask": attention_mask,
|
712 |
+
"cache_position": cache_position,
|
713 |
+
}
|
714 |
+
)
|
715 |
+
return model_inputs
|
716 |
+
|
717 |
+
@staticmethod
|
718 |
+
def _reorder_cache(past_key_values, beam_idx):
|
719 |
+
reordered_past = ()
|
720 |
+
for layer_past in past_key_values:
|
721 |
+
reordered_past += (
|
722 |
+
tuple(
|
723 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
724 |
+
for past_state in layer_past
|
725 |
+
),
|
726 |
+
)
|
727 |
+
return reordered_past
|
728 |
+
|
729 |
+
if __name__ == "__main__":
|
730 |
+
config = Qwen2Config(encoder_config=encoder_config_dict)
|
731 |
+
dolphin_model = DolphinModel(config)
|
732 |
+
# AutoConfig.register("dolphin", Qwen2Config)
|
733 |
+
AutoModelForCausalLM.register(Qwen2Config, DolphinForCausalLM)
|
734 |
+
tokenizer = AutoTokenizer.from_pretrained('nexa-collaboration/dolphin_instruct_1M_0805', trust_remote_code=True)
|
735 |
+
model = AutoModelForCausalLM.from_pretrained('nexa-collaboration/dolphin_instruct_1M_0805', trust_remote_code=True)
|