--- library_name: transformers base_model: allenai/tulu-2-7b tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: ultrafeedback-binarized-tulu-2-7b-dpo-full results: [] --- # ultrafeedback-binarized-tulu-2-7b-dpo-full This model is a fine-tuned version of [allenai/tulu-2-7b](https://huggingface.co/allenai/tulu-2-7b) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.6636 - Rewards/chosen: 0.0407 - Rewards/rejected: -0.0326 - Rewards/accuracies: 0.6746 - Rewards/margins: 0.0733 - Logps/rejected: -317.3561 - Logps/chosen: -335.2600 - Logits/rejected: -1.2511 - Logits/chosen: -1.1780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6762 | 0.4184 | 100 | 0.6753 | 0.0546 | 0.0122 | 0.6627 | 0.0424 | -312.8761 | -333.8717 | -1.2638 | -1.1861 | | 0.6604 | 0.8368 | 200 | 0.6640 | 0.0423 | -0.0311 | 0.6706 | 0.0734 | -317.2082 | -335.1042 | -1.2523 | -1.1794 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.1.2+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1