Upload 3 files
Browse files- config.json +5 -0
- hyperparams.yaml +250 -0
- model.ckpt +3 -0
config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"speechbrain_interface": "Tacotron2",
|
3 |
+
"vocoder_interface": "HiFIGAN",
|
4 |
+
"vocoder_model_id": "speechbrain/tts-hifigan-ljspeech"
|
5 |
+
}
|
hyperparams.yaml
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated 2024-03-06 from:
|
2 |
+
# /home/marconilab/tacotron2/hparams/train.yaml
|
3 |
+
# yamllint disable
|
4 |
+
############################################################################
|
5 |
+
# Model: Tacotron2
|
6 |
+
# Tokens: Raw characters (English text)
|
7 |
+
# losses: Transducer
|
8 |
+
# Training: LJSpeech
|
9 |
+
# Authors: Georges Abous-Rjeili, Artem Ploujnikov, Yingzhi Wang
|
10 |
+
# ############################################################################
|
11 |
+
|
12 |
+
|
13 |
+
###################################
|
14 |
+
# Experiment Parameters and setup #
|
15 |
+
###################################
|
16 |
+
seed: 1234
|
17 |
+
__set_seed: !apply:torch.manual_seed [1234]
|
18 |
+
output_folder: ./results/tacotron2/1234
|
19 |
+
save_folder: ./results/tacotron2/1234/save
|
20 |
+
train_log: ./results/tacotron2/1234/train_log.txt
|
21 |
+
epochs: 500
|
22 |
+
keep_checkpoint_interval: 50
|
23 |
+
wandb_id: tacotron2-luganda
|
24 |
+
wandb_user: sulaiman-kagumire
|
25 |
+
wandb_project: tts-luganda
|
26 |
+
init_from_pretrained: true
|
27 |
+
###################################
|
28 |
+
# Progress Samples #
|
29 |
+
###################################
|
30 |
+
# Progress samples are used to monitor the progress
|
31 |
+
# of an ongoing training session by outputting samples
|
32 |
+
# of spectrograms, alignments, etc at regular intervals
|
33 |
+
|
34 |
+
# Whether to enable progress samples
|
35 |
+
progress_samples: false
|
36 |
+
|
37 |
+
# The path where the samples will be stored
|
38 |
+
progress_sample_path: ./results/tacotron2/1234/samples
|
39 |
+
# The interval, in epochs. For instance, if it is set to 5,
|
40 |
+
# progress samples will be output every 5 epochs
|
41 |
+
progress_samples_interval: 1
|
42 |
+
# The sample size for raw batch samples saved in batch.pth
|
43 |
+
# (useful mostly for model debugging)
|
44 |
+
progress_batch_sample_size: 3
|
45 |
+
|
46 |
+
#################################
|
47 |
+
# Data files and pre-processing #
|
48 |
+
#################################
|
49 |
+
data_folder: data_folder
|
50 |
+
# e.g, /localscratch/ljspeech
|
51 |
+
|
52 |
+
train_json: ./results/tacotron2/1234/save/train.json
|
53 |
+
valid_json: ./results/tacotron2/1234/save/valid.json
|
54 |
+
test_json: ./results/tacotron2/1234/save/test.json
|
55 |
+
|
56 |
+
splits: [train, valid, test]
|
57 |
+
split_ratio: [80, 10, 10]
|
58 |
+
|
59 |
+
skip_prep: false
|
60 |
+
|
61 |
+
# Use the original preprocessing from nvidia
|
62 |
+
# The cleaners to be used (applicable to nvidia only)
|
63 |
+
text_cleaners: [basic_cleaners]
|
64 |
+
|
65 |
+
################################
|
66 |
+
# Audio Parameters #
|
67 |
+
################################
|
68 |
+
sample_rate: 22050
|
69 |
+
hop_length: 256
|
70 |
+
win_length: 1024
|
71 |
+
n_mel_channels: 80
|
72 |
+
n_fft: 1024
|
73 |
+
mel_fmin: 0.0
|
74 |
+
mel_fmax: 8000.0
|
75 |
+
mel_normalized: false
|
76 |
+
power: 1
|
77 |
+
norm: slaney
|
78 |
+
mel_scale: slaney
|
79 |
+
dynamic_range_compression: true
|
80 |
+
|
81 |
+
################################
|
82 |
+
# Optimization Hyperparameters #
|
83 |
+
################################
|
84 |
+
learning_rate: 0.001
|
85 |
+
weight_decay: 0.000006
|
86 |
+
batch_size: 256
|
87 |
+
num_workers: 8
|
88 |
+
mask_padding: true
|
89 |
+
guided_attention_sigma: 0.2
|
90 |
+
guided_attention_weight: 50.0
|
91 |
+
guided_attention_weight_half_life: 10.
|
92 |
+
guided_attention_hard_stop: 50
|
93 |
+
gate_loss_weight: 1.0
|
94 |
+
|
95 |
+
train_dataloader_opts:
|
96 |
+
batch_size: 256
|
97 |
+
drop_last: false #True #False
|
98 |
+
num_workers: 8
|
99 |
+
collate_fn: !new:speechbrain.lobes.models.Tacotron2.TextMelCollate
|
100 |
+
|
101 |
+
valid_dataloader_opts:
|
102 |
+
batch_size: 256
|
103 |
+
num_workers: 8
|
104 |
+
collate_fn: !new:speechbrain.lobes.models.Tacotron2.TextMelCollate
|
105 |
+
|
106 |
+
test_dataloader_opts:
|
107 |
+
batch_size: 256
|
108 |
+
num_workers: 8
|
109 |
+
collate_fn: !new:speechbrain.lobes.models.Tacotron2.TextMelCollate
|
110 |
+
|
111 |
+
################################
|
112 |
+
# Model Parameters and model #
|
113 |
+
################################
|
114 |
+
n_symbols: 148 #fixed depending on symbols in textToSequence
|
115 |
+
symbols_embedding_dim: 512
|
116 |
+
|
117 |
+
# Encoder parameters
|
118 |
+
encoder_kernel_size: 5
|
119 |
+
encoder_n_convolutions: 3
|
120 |
+
encoder_embedding_dim: 512
|
121 |
+
|
122 |
+
# Decoder parameters
|
123 |
+
# The number of frames in the target per encoder step
|
124 |
+
n_frames_per_step: 1
|
125 |
+
decoder_rnn_dim: 1024
|
126 |
+
prenet_dim: 256
|
127 |
+
max_decoder_steps: 1000
|
128 |
+
gate_threshold: 0.5
|
129 |
+
p_attention_dropout: 0.1
|
130 |
+
p_decoder_dropout: 0.1
|
131 |
+
decoder_no_early_stopping: false
|
132 |
+
|
133 |
+
# Attention parameters
|
134 |
+
attention_rnn_dim: 1024
|
135 |
+
attention_dim: 128
|
136 |
+
|
137 |
+
# Location Layer parameters
|
138 |
+
attention_location_n_filters: 32
|
139 |
+
attention_location_kernel_size: 31
|
140 |
+
|
141 |
+
# Mel-post processing network parameters
|
142 |
+
postnet_embedding_dim: 512
|
143 |
+
postnet_kernel_size: 5
|
144 |
+
postnet_n_convolutions: 5
|
145 |
+
|
146 |
+
mel_spectogram: !name:speechbrain.lobes.models.Tacotron2.mel_spectogram
|
147 |
+
sample_rate: 22050
|
148 |
+
hop_length: 256
|
149 |
+
win_length: 1024
|
150 |
+
n_fft: 1024
|
151 |
+
n_mels: 80
|
152 |
+
f_min: 0.0
|
153 |
+
f_max: 8000.0
|
154 |
+
power: 1
|
155 |
+
normalized: false
|
156 |
+
norm: slaney
|
157 |
+
mel_scale: slaney
|
158 |
+
compression: true
|
159 |
+
|
160 |
+
#model
|
161 |
+
model: &id002 !new:speechbrain.lobes.models.Tacotron2.Tacotron2
|
162 |
+
|
163 |
+
#optimizer
|
164 |
+
mask_padding: true
|
165 |
+
n_mel_channels: 80
|
166 |
+
# symbols
|
167 |
+
n_symbols: 148
|
168 |
+
symbols_embedding_dim: 512
|
169 |
+
# encoder
|
170 |
+
encoder_kernel_size: 5
|
171 |
+
encoder_n_convolutions: 3
|
172 |
+
encoder_embedding_dim: 512
|
173 |
+
# attention
|
174 |
+
attention_rnn_dim: 1024
|
175 |
+
attention_dim: 128
|
176 |
+
# attention location
|
177 |
+
attention_location_n_filters: 32
|
178 |
+
attention_location_kernel_size: 31
|
179 |
+
# decoder
|
180 |
+
n_frames_per_step: 1
|
181 |
+
decoder_rnn_dim: 1024
|
182 |
+
prenet_dim: 256
|
183 |
+
max_decoder_steps: 1000
|
184 |
+
gate_threshold: 0.5
|
185 |
+
p_attention_dropout: 0.1
|
186 |
+
p_decoder_dropout: 0.1
|
187 |
+
# postnet
|
188 |
+
postnet_embedding_dim: 512
|
189 |
+
postnet_kernel_size: 5
|
190 |
+
postnet_n_convolutions: 5
|
191 |
+
decoder_no_early_stopping: false
|
192 |
+
|
193 |
+
guided_attention_scheduler: &id001 !new:speechbrain.nnet.schedulers.StepScheduler
|
194 |
+
initial_value: 50.0
|
195 |
+
half_life: 10.
|
196 |
+
|
197 |
+
criterion: !new:speechbrain.lobes.models.Tacotron2.Loss
|
198 |
+
gate_loss_weight: 1.0
|
199 |
+
guided_attention_weight: 50.0
|
200 |
+
guided_attention_sigma: 0.2
|
201 |
+
guided_attention_scheduler: *id001
|
202 |
+
guided_attention_hard_stop: 50
|
203 |
+
|
204 |
+
modules:
|
205 |
+
model: *id002
|
206 |
+
opt_class: !name:torch.optim.Adam
|
207 |
+
lr: 0.001
|
208 |
+
weight_decay: 0.000006
|
209 |
+
|
210 |
+
#epoch object
|
211 |
+
epoch_counter: &id003 !new:speechbrain.utils.epoch_loop.EpochCounter
|
212 |
+
limit: 500
|
213 |
+
|
214 |
+
# train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
|
215 |
+
# save_file: !ref <train_log>
|
216 |
+
train_logger: !new:speechbrain.utils.train_logger.WandBLogger
|
217 |
+
initializer: !name:wandb.init
|
218 |
+
# id: !ref <wandb_id>
|
219 |
+
name: tacotron2-luganda
|
220 |
+
entity: sulaiman-kagumire
|
221 |
+
project: tts-luganda
|
222 |
+
reinit: true
|
223 |
+
# yaml_config: hparams/train.yaml
|
224 |
+
resume: allow
|
225 |
+
|
226 |
+
#annealing_function
|
227 |
+
lr_annealing: &id004 !new:speechbrain.nnet.schedulers.IntervalScheduler
|
228 |
+
|
229 |
+
#infer: !name:speechbrain.lobes.models.Tacotron2.infer
|
230 |
+
|
231 |
+
intervals:
|
232 |
+
- steps: 6000
|
233 |
+
lr: 0.0005
|
234 |
+
- steps: 8000
|
235 |
+
lr: 0.0003
|
236 |
+
- steps: 10000
|
237 |
+
lr: 0.0001
|
238 |
+
|
239 |
+
#checkpointer
|
240 |
+
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
|
241 |
+
checkpoints_dir: ./results/tacotron2/1234/save
|
242 |
+
recoverables:
|
243 |
+
model: *id002
|
244 |
+
counter: *id003
|
245 |
+
scheduler: *id004
|
246 |
+
progress_sample_logger: !new:speechbrain.utils.train_logger.ProgressSampleLogger
|
247 |
+
output_path: ./results/tacotron2/1234/samples
|
248 |
+
batch_sample_size: 3
|
249 |
+
formats:
|
250 |
+
raw_batch: raw
|
model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2600ccebd2116d3f97b39e3f5f16d0e607b03e0008a699efa510c48e14331a0
|
3 |
+
size 112826573
|