File size: 31,967 Bytes
bdd2065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Item 3—Legal Proceedings See discussion of Legal Proceedings in
    Note 10 to the consolidated financial statements included in Item 8 of this Report.
  sentences:
  - What financial measures are presented on a non-GAAP basis in this Annual Report
    on Form 10-K?
  - Which section of the report discusses Legal Proceedings?
  - What criteria was used to audit the internal control over financial reporting
    of The Procter & Gamble Company as of June 30, 2023?
- source_sentence: A portion of the defense and/or settlement costs associated with
    such litigation is covered by indemnification from third parties in limited cases.
  sentences:
  - How did the writers' and actors' strikes affect the Company's entertainment segment
    in 2023?
  - Can indemnification from third parties also contribute to covering litigation
    costs?
  - What was the balance of net cash used in financing activities for Costco for the
    52 weeks ended August 28, 2022?
- source_sentence: In the company, to have a diverse and inclusive workforce, there
    is an emphasis on attracting and hiring talented people who represent a mix of
    backgrounds, identities, and experiences.
  sentences:
  - What does AT&T emphasize to ensure they have a diverse and inclusive workforce?
  - What drove the growth in marketplace revenue for the year ended December 31, 2023?
  - What was the effect of prior-period medical claims reserve development on the
    Insurance segment's benefit ratio in 2023?
- source_sentence: Internal control over financial reporting is a process designed
    to provide reasonable assurance regarding the reliability of financial reporting
    and the preparation of financial statements for external purposes in accordance
    with generally accepted accounting principles. It includes various policies and
    procedures that ensure accurate and fair record maintenance, proper transaction
    recording, and prevention or detection of unauthorized use or acquisition of assets.
  sentences:
  - How much did net cash used in financing activities decrease in fiscal 2023 compared
    to the previous fiscal year?
  - How does Visa ensure the protection of its intellectual property?
  - What is the purpose of internal control over financial reporting according to
    the document?
- source_sentence: Non-GAAP earnings from operations and non-GAAP operating profit
    margin consist of earnings from operations or earnings from operations as a percentage
    of net revenue excluding the items mentioned above and charges relating to the
    amortization of intangible assets, goodwill impairment, transformation costs and
    acquisition, disposition and other related charges. Hewlett Packard Enterprise
    excludes these items because they are non-cash expenses, are significantly impacted
    by the timing and magnitude of acquisitions, and are inconsistent in amount and
    frequency.
  sentences:
  - What specific charges are excluded from Hewlett Packard Enterprise's non-GAAP
    operating profit margin and why?
  - How many shares were outstanding at the beginning of 2023 and what was their aggregate
    intrinsic value?
  - What was the annual amortization expense forecast for acquisition-related intangible
    assets in 2025, according to a specified financial projection?
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.7157142857142857
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8571428571428571
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8871428571428571
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9314285714285714
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7157142857142857
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2857142857142857
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1774285714285714
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09314285714285712
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7157142857142857
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8571428571428571
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8871428571428571
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9314285714285714
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8274896625809096
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7939818594104311
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7969204030602811
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.7142857142857143
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8571428571428571
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8871428571428571
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9314285714285714
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7142857142857143
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2857142857142857
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1774285714285714
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09314285714285712
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7142857142857143
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8571428571428571
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8871428571428571
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9314285714285714
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8267670378473014
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7930204081632654
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7958033409607879
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.7157142857142857
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8514285714285714
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8828571428571429
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.93
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7157142857142857
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2838095238095238
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17657142857142857
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09299999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7157142857142857
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8514285714285714
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8828571428571429
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.93
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.825504930245723
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7918724489795919
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7945830508495424
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.7142857142857143
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8428571428571429
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8742857142857143
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9214285714285714
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7142857142857143
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.28095238095238095
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17485714285714282
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09214285714285712
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7142857142857143
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8428571428571429
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8742857142857143
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9214285714285714
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8203162516614704
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7878543083900227
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7909435994513387
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.6828571428571428
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.81
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.85
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9042857142857142
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6828571428571428
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16999999999999998
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09042857142857143
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6828571428571428
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.81
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.85
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9042857142857142
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7926026006937184
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7570844671201811
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7606949750229449
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("NickyNicky/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'Non-GAAP earnings from operations and non-GAAP operating profit margin consist of earnings from operations or earnings from operations as a percentage of net revenue excluding the items mentioned above and charges relating to the amortization of intangible assets, goodwill impairment, transformation costs and acquisition, disposition and other related charges. Hewlett Packard Enterprise excludes these items because they are non-cash expenses, are significantly impacted by the timing and magnitude of acquisitions, and are inconsistent in amount and frequency.',
    "What specific charges are excluded from Hewlett Packard Enterprise's non-GAAP operating profit margin and why?",
    'How many shares were outstanding at the beginning of 2023 and what was their aggregate intrinsic value?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7157     |
| cosine_accuracy@3   | 0.8571     |
| cosine_accuracy@5   | 0.8871     |
| cosine_accuracy@10  | 0.9314     |
| cosine_precision@1  | 0.7157     |
| cosine_precision@3  | 0.2857     |
| cosine_precision@5  | 0.1774     |
| cosine_precision@10 | 0.0931     |
| cosine_recall@1     | 0.7157     |
| cosine_recall@3     | 0.8571     |
| cosine_recall@5     | 0.8871     |
| cosine_recall@10    | 0.9314     |
| cosine_ndcg@10      | 0.8275     |
| cosine_mrr@10       | 0.794      |
| **cosine_map@100**  | **0.7969** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7143     |
| cosine_accuracy@3   | 0.8571     |
| cosine_accuracy@5   | 0.8871     |
| cosine_accuracy@10  | 0.9314     |
| cosine_precision@1  | 0.7143     |
| cosine_precision@3  | 0.2857     |
| cosine_precision@5  | 0.1774     |
| cosine_precision@10 | 0.0931     |
| cosine_recall@1     | 0.7143     |
| cosine_recall@3     | 0.8571     |
| cosine_recall@5     | 0.8871     |
| cosine_recall@10    | 0.9314     |
| cosine_ndcg@10      | 0.8268     |
| cosine_mrr@10       | 0.793      |
| **cosine_map@100**  | **0.7958** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7157     |
| cosine_accuracy@3   | 0.8514     |
| cosine_accuracy@5   | 0.8829     |
| cosine_accuracy@10  | 0.93       |
| cosine_precision@1  | 0.7157     |
| cosine_precision@3  | 0.2838     |
| cosine_precision@5  | 0.1766     |
| cosine_precision@10 | 0.093      |
| cosine_recall@1     | 0.7157     |
| cosine_recall@3     | 0.8514     |
| cosine_recall@5     | 0.8829     |
| cosine_recall@10    | 0.93       |
| cosine_ndcg@10      | 0.8255     |
| cosine_mrr@10       | 0.7919     |
| **cosine_map@100**  | **0.7946** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7143     |
| cosine_accuracy@3   | 0.8429     |
| cosine_accuracy@5   | 0.8743     |
| cosine_accuracy@10  | 0.9214     |
| cosine_precision@1  | 0.7143     |
| cosine_precision@3  | 0.281      |
| cosine_precision@5  | 0.1749     |
| cosine_precision@10 | 0.0921     |
| cosine_recall@1     | 0.7143     |
| cosine_recall@3     | 0.8429     |
| cosine_recall@5     | 0.8743     |
| cosine_recall@10    | 0.9214     |
| cosine_ndcg@10      | 0.8203     |
| cosine_mrr@10       | 0.7879     |
| **cosine_map@100**  | **0.7909** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6829     |
| cosine_accuracy@3   | 0.81       |
| cosine_accuracy@5   | 0.85       |
| cosine_accuracy@10  | 0.9043     |
| cosine_precision@1  | 0.6829     |
| cosine_precision@3  | 0.27       |
| cosine_precision@5  | 0.17       |
| cosine_precision@10 | 0.0904     |
| cosine_recall@1     | 0.6829     |
| cosine_recall@3     | 0.81       |
| cosine_recall@5     | 0.85       |
| cosine_recall@10    | 0.9043     |
| cosine_ndcg@10      | 0.7926     |
| cosine_mrr@10       | 0.7571     |
| **cosine_map@100**  | **0.7607** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                          | anchor                                                                            |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 6 tokens</li><li>mean: 46.8 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 20.89 tokens</li><li>max: 51 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                   | anchor                                                                                               |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------|
  | <code>Retail sales mix by product type for company-operated stores shows beverages at 74%, food at 22%, and other items at 4%.</code>                                                                                                                                                                      | <code>What are the primary products sold in Starbucks company-operated stores?</code>                |
  | <code>The pre-tax adjustment for transformation costs was $136 in 2021 and $111 in 2020. Transformation costs primarily include costs related to store and business closure costs and third party professional consulting fees associated with business transformation and cost saving initiatives.</code> | <code>What was the purpose of pre-tax adjustments for transformation costs by The Kroger Co.?</code> |
  | <code>HP's Consolidated Financial Statements are prepared in accordance with United States generally accepted accounting principles (GAAP).</code>                                                                                                                                                         | <code>What principles do HP's Consolidated Financial Statements adhere to?</code>                    |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 40
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 40
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:------:|:----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.9114 | 9    | -             | 0.7311                 | 0.7527                 | 0.7618                 | 0.6911                | 0.7612                 |
| 1.0127 | 10   | 1.9734        | -                      | -                      | -                      | -                     | -                      |
| 1.9241 | 19   | -             | 0.7638                 | 0.7748                 | 0.7800                 | 0.7412                | 0.7836                 |
| 2.0253 | 20   | 0.8479        | -                      | -                      | -                      | -                     | -                      |
| 2.9367 | 29   | -             | 0.7775                 | 0.7842                 | 0.7902                 | 0.7473                | 0.7912                 |
| 3.0380 | 30   | 0.524         | -                      | -                      | -                      | -                     | -                      |
| 3.9494 | 39   | -             | 0.7831                 | 0.7860                 | 0.7915                 | 0.7556                | 0.7939                 |
| 4.0506 | 40   | 0.3826        | -                      | -                      | -                      | -                     | -                      |
| 4.9620 | 49   | -             | 0.7896                 | 0.7915                 | 0.7927                 | 0.7616                | 0.7983                 |
| 5.0633 | 50   | 0.3165        | -                      | -                      | -                      | -                     | -                      |
| 5.9747 | 59   | -             | 0.7925                 | 0.7946                 | 0.7943                 | 0.7603                | 0.7978                 |
| 6.0759 | 60   | 0.2599        | -                      | -                      | -                      | -                     | -                      |
| 6.9873 | 69   | -             | 0.7918                 | 0.7949                 | 0.7951                 | 0.7608                | 0.7976                 |
| 7.0886 | 70   | 0.2424        | -                      | -                      | -                      | -                     | -                      |
| 8.0    | 79   | -             | 0.7925                 | 0.7956                 | 0.7959                 | 0.7612                | 0.7989                 |
| 8.1013 | 80   | 0.2243        | -                      | -                      | -                      | -                     | -                      |
| 8.9114 | 88   | -             | 0.7927                 | 0.7956                 | 0.7961                 | 0.7610                | 0.7983                 |
| 9.1139 | 90   | 0.2222        | 0.7909                 | 0.7946                 | 0.7958                 | 0.7607                | 0.7969                 |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->