File size: 33,026 Bytes
ef6fb41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 |
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Teams across Delta have worked together to make an impact through
enhanced landing procedures, optimizations to flight routing and speed, and weight
reduction initiatives, saving over 20 million gallons of jet fuel in 2022 and
2023.
sentences:
- What was the percentage increase in Services net sales from 2022 to 2023?
- How much jet fuel did Delta Air Lines save between 2022 and 2023 through optimizations
in aircraft operations?
- How did Ford Pro's EBIT in 2023 compare to the previous year, and what contributed
to this change?
- source_sentence: On February 14, 2022, the State of Texas filed a lawsuit against
us in Texas state court (Texas v. Meta Platforms, Inc.) alleging that "tag suggestions"
and other uses of facial recognition technology violated the Texas Capture or
Use of Biometric Identifiers Act and the Texas Deceptive Trade Practices-Consumer
Protection Act, and seeking statutory damages and injunctive relief.
sentences:
- What did the auditor’s report dated February 9, 2024, state about the effectiveness
of Enphase Energy’s internal control over financial reporting as of December 31,
2023?
- What legal action did the State of Texas initiate against Meta Platforms, Inc.
on February 14, 2022?
- What caused the pretax loss in the Corporate & Other segment to increase in 2023
compared to 2022?
- source_sentence: Our two operating segments are "Compute & Networking" and "Graphics."
Refer to Note 17 of the Notes to the Consolidated Financial Statements in Part
IV, Item 15 of this Annual Report on Form 10-K for additional information.
sentences:
- What are the two operating segments of NVIDIA as mentioned in the text?
- How much did the gross margin increase in 2023 compared to 2022?
- What is the total assets and shareholders' equity of Chubb Limited as of December
31, 2023?
- source_sentence: The increase in marketing and sales expenses in fiscal year 2023
was mainly due to higher advertising and promotional spending related to Apex
Legends Mobile and the FIFA franchise.
sentences:
- What are included in Part IV, Item 15(a)(1) of the Annual Report on Form 10-K?
- What was the net income reported for the fiscal year ending in August 2023?
- What was the primary cause of the increase in marketing and sales expenses in
fiscal year 2023?
- source_sentence: 'Information on legal proceedings is included in Contact Email PRIOR
HISTORY: None PLACEHOLDER FOR ARBITRATION.'
sentences:
- Where can information about legal proceedings be found in the financial statements?
- What remaining authorization amount was available for share repurchases as of
January 28, 2023?
- What is the total amount authorized for the repurchase of common stock up to December
2023?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.71
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8428571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8771428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9142857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.71
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28095238095238095
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1754285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09142857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.71
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8428571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8771428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9142857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8151955748060781
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.783174603174603
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7866554834362436
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7028571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8457142857142858
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.88
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9157142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7028571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2819047619047619
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.176
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09157142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7028571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8457142857142858
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.88
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9157142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8131832672898918
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7799625850340134
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7833067978748278
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6985714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8457142857142858
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8785714285714286
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9071428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6985714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2819047619047619
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17571428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0907142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6985714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8457142857142858
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8785714285714286
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9071428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8072080679843728
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7746224489795912
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7782328948106179
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6914285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8428571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8714285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9057142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6914285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28095238095238095
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17428571428571427
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09057142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6914285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8428571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8714285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9057142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.80532196181792
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7725623582766435
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7764353709024747
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6757142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8114285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.85
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8842857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6757142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2704761904761904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08842857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6757142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8114285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.85
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8842857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7835900962247281
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7508775510204081
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7557906355020412
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("NickyNicky/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Information on legal proceedings is included in Contact Email PRIOR HISTORY: None PLACEHOLDER FOR ARBITRATION.',
'Where can information about legal proceedings be found in the financial statements?',
'What remaining authorization amount was available for share repurchases as of January 28, 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.71 |
| cosine_accuracy@3 | 0.8429 |
| cosine_accuracy@5 | 0.8771 |
| cosine_accuracy@10 | 0.9143 |
| cosine_precision@1 | 0.71 |
| cosine_precision@3 | 0.281 |
| cosine_precision@5 | 0.1754 |
| cosine_precision@10 | 0.0914 |
| cosine_recall@1 | 0.71 |
| cosine_recall@3 | 0.8429 |
| cosine_recall@5 | 0.8771 |
| cosine_recall@10 | 0.9143 |
| cosine_ndcg@10 | 0.8152 |
| cosine_mrr@10 | 0.7832 |
| **cosine_map@100** | **0.7867** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7029 |
| cosine_accuracy@3 | 0.8457 |
| cosine_accuracy@5 | 0.88 |
| cosine_accuracy@10 | 0.9157 |
| cosine_precision@1 | 0.7029 |
| cosine_precision@3 | 0.2819 |
| cosine_precision@5 | 0.176 |
| cosine_precision@10 | 0.0916 |
| cosine_recall@1 | 0.7029 |
| cosine_recall@3 | 0.8457 |
| cosine_recall@5 | 0.88 |
| cosine_recall@10 | 0.9157 |
| cosine_ndcg@10 | 0.8132 |
| cosine_mrr@10 | 0.78 |
| **cosine_map@100** | **0.7833** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6986 |
| cosine_accuracy@3 | 0.8457 |
| cosine_accuracy@5 | 0.8786 |
| cosine_accuracy@10 | 0.9071 |
| cosine_precision@1 | 0.6986 |
| cosine_precision@3 | 0.2819 |
| cosine_precision@5 | 0.1757 |
| cosine_precision@10 | 0.0907 |
| cosine_recall@1 | 0.6986 |
| cosine_recall@3 | 0.8457 |
| cosine_recall@5 | 0.8786 |
| cosine_recall@10 | 0.9071 |
| cosine_ndcg@10 | 0.8072 |
| cosine_mrr@10 | 0.7746 |
| **cosine_map@100** | **0.7782** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6914 |
| cosine_accuracy@3 | 0.8429 |
| cosine_accuracy@5 | 0.8714 |
| cosine_accuracy@10 | 0.9057 |
| cosine_precision@1 | 0.6914 |
| cosine_precision@3 | 0.281 |
| cosine_precision@5 | 0.1743 |
| cosine_precision@10 | 0.0906 |
| cosine_recall@1 | 0.6914 |
| cosine_recall@3 | 0.8429 |
| cosine_recall@5 | 0.8714 |
| cosine_recall@10 | 0.9057 |
| cosine_ndcg@10 | 0.8053 |
| cosine_mrr@10 | 0.7726 |
| **cosine_map@100** | **0.7764** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6757 |
| cosine_accuracy@3 | 0.8114 |
| cosine_accuracy@5 | 0.85 |
| cosine_accuracy@10 | 0.8843 |
| cosine_precision@1 | 0.6757 |
| cosine_precision@3 | 0.2705 |
| cosine_precision@5 | 0.17 |
| cosine_precision@10 | 0.0884 |
| cosine_recall@1 | 0.6757 |
| cosine_recall@3 | 0.8114 |
| cosine_recall@5 | 0.85 |
| cosine_recall@10 | 0.8843 |
| cosine_ndcg@10 | 0.7836 |
| cosine_mrr@10 | 0.7509 |
| **cosine_map@100** | **0.7558** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 47.19 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.59 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
| positive | anchor |
|:----------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
| <code>For the year ended December 31, 2023, $305 million was recorded as a distribution against retained earnings for dividends.</code> | <code>How much in dividends was recorded against retained earnings in 2023?</code> |
| <code>In February 2023, we announced a 10% increase in our quarterly cash dividend to $2.09 per share.</code> | <code>By how much did the company increase its quarterly cash dividend in February 2023?</code> |
| <code>Depreciation and amortization totaled $4,856 as recorded in the financial statements.</code> | <code>How much did depreciation and amortization total to in the financial statements?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 40
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 20
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 40
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 20
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:-------:|:----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.9114 | 9 | - | 0.7124 | 0.7361 | 0.7366 | 0.6672 | 0.7443 |
| 1.0127 | 10 | 2.0952 | - | - | - | - | - |
| 1.9241 | 19 | - | 0.7437 | 0.7561 | 0.7628 | 0.7172 | 0.7653 |
| 2.0253 | 20 | 1.1175 | - | - | - | - | - |
| 2.9367 | 29 | - | 0.7623 | 0.7733 | 0.7694 | 0.7288 | 0.7723 |
| 3.0380 | 30 | 0.6104 | - | - | - | - | - |
| 3.9494 | 39 | - | 0.7723 | 0.7746 | 0.7804 | 0.7405 | 0.7789 |
| 4.0506 | 40 | 0.4106 | - | - | - | - | - |
| 4.9620 | 49 | - | 0.7777 | 0.7759 | 0.7820 | 0.7475 | 0.7842 |
| 5.0633 | 50 | 0.314 | - | - | - | - | - |
| 5.9747 | 59 | - | 0.7802 | 0.7796 | 0.7856 | 0.7548 | 0.7839 |
| 6.0759 | 60 | 0.2423 | - | - | - | - | - |
| 6.9873 | 69 | - | 0.7756 | 0.7772 | 0.7834 | 0.7535 | 0.7818 |
| 7.0886 | 70 | 0.1962 | - | - | - | - | - |
| 8.0 | 79 | - | 0.7741 | 0.7774 | 0.7841 | 0.7551 | 0.7822 |
| 8.1013 | 80 | 0.1627 | - | - | - | - | - |
| 8.9114 | 88 | - | 0.7724 | 0.7752 | 0.7796 | 0.7528 | 0.7816 |
| 9.1139 | 90 | 0.1379 | - | - | - | - | - |
| 9.9241 | 98 | - | 0.7691 | 0.7782 | 0.7834 | 0.7559 | 0.7836 |
| 10.1266 | 100 | 0.1249 | - | - | - | - | - |
| 10.9367 | 108 | - | 0.7728 | 0.7802 | 0.7831 | 0.7536 | 0.7848 |
| 11.1392 | 110 | 0.1105 | - | - | - | - | - |
| 11.9494 | 118 | - | 0.7748 | 0.7785 | 0.7814 | 0.7558 | 0.7851 |
| 12.1519 | 120 | 0.1147 | - | - | - | - | - |
| 12.9620 | 128 | - | 0.7756 | 0.7788 | 0.7839 | 0.7550 | 0.7864 |
| 13.1646 | 130 | 0.098 | - | - | - | - | - |
| 13.9747 | 138 | - | 0.7767 | 0.7792 | 0.7828 | 0.7557 | 0.7873 |
| 14.1772 | 140 | 0.0927 | - | - | - | - | - |
| 14.9873 | 148 | - | 0.7758 | 0.7804 | 0.7847 | 0.7569 | 0.7892 |
| 15.1899 | 150 | 0.0921 | - | - | - | - | - |
| 16.0 | 158 | - | 0.7760 | 0.7794 | 0.7831 | 0.7551 | 0.7873 |
| 16.2025 | 160 | 0.0896 | - | - | - | - | - |
| 16.9114 | 167 | - | 0.7753 | 0.7799 | 0.7841 | 0.7570 | 0.7888 |
| 17.2152 | 170 | 0.0881 | - | - | - | - | - |
| 17.9241 | 177 | - | 0.7763 | 0.7787 | 0.7842 | 0.7561 | 0.7867 |
| 18.2278 | 180 | 0.0884 | 0.7764 | 0.7782 | 0.7833 | 0.7558 | 0.7867 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |