--- license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: resnet-50-finetuned-student_kaggle results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.4889937106918239 --- # resnet-50-finetuned-student_kaggle This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 34897389209777069883392.0000 - Accuracy: 0.4890 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:----------------------------:|:------:|:----:|:----------------------------:|:--------:| | 33718936798882659565568.0000 | 0.9362 | 11 | 34897389209777069883392.0000 | 0.4890 | | 32438469749948979085312.0000 | 1.9574 | 23 | 34897389209777069883392.0000 | 0.4890 | | 33363246103192638849024.0000 | 2.9787 | 35 | 34897389209777069883392.0000 | 0.4890 | | 32954207567756639862784.0000 | 4.0 | 47 | 34897389209777069883392.0000 | 0.4890 | | 32794156842759294550016.0000 | 4.6809 | 55 | 34897389209777069883392.0000 | 0.4890 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1