File size: 4,060 Bytes
261b4fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
base_model: AI-MO/NuminaMath-7B-TIR
license: apache-2.0
pipeline_tag: text-generation
tags:
- alignment-handbook
- generated_from_trainer
- llama-cpp
- gguf-my-repo
widget:
- example_title: Math problem
  messages:
  - role: user
    content: For how many values of the constant $k$ will the polynomial $x^{2}+kx+36$
      have two distinct integer roots?
  output:
    text: '### Solution: 1. For the polynomial \\( x^2 + kx + 36 \\) to have two distinct
      integer roots, let''s denote these roots by \\( r_1 \\) and \\( r_2 \\).\n\n2.
      According to Vieta''s formulas, the sum of the roots \\( r_1 + r_2 \\) is equal
      to \\(-k\\), and the product of the roots \\( r_1 \\cdot r_2 \\) is equal to
      36.\n\n3. To find the distinct integer pairs \\((r_1, r_2)\\) whose product
      is 36, we need to determine all pairs of integers \\((r_1, r_2)\\) such that
      \\( r_1 \\cdot r_2 = 36 \\) and \\( r_1 \\neq r_2 \\).\n\n4. From the equation
      \\( r_1 + r_2 = -k \\), for each valid pair \\((r_1, r_2)\\), we can compute
      the corresponding value of \\( k \\).\n\n5. Finally, since we need the polynomial
      to have two distinct integer roots, we need to ensure that \\( r_1 \\) and \\(
      r_2 \\) are distinct.\n\nLet''s start by finding all pairs \\((r_1, r_2)\\)
      such that \\( r_1 \\cdot r_2 = 36 \\). We''ll then determine the values of \\(
      k \\) and ensure the roots are distinct.\n```python\nimport itertools\n\n# Find
      all pairs (r1, r2) such that r1 * r2 = 36\nproduct_36 = 36\nfactor_pairs = []\n\nfor
      i in range(1, product_36 + 1):\n if product_36 % i == 0:\n pair = (i, product_36
      // i)\n if pair[0] != pair[1]: # Ensure distinct pairs\n factor_pairs.append(pair)\n\n#
      Calculate k for each pair and ensure distinct integer roots\nvalid_k_values
      = set()\nfor r1, r2 in factor_pairs:\n if r1 != r2:\n k = -(r1 + r2)\n valid_k_values.add(k)\n\nprint((len(valid_k_values),
      sorted(valid_k_values)))\n```\n```output\n(4, [-37, -20, -15, -13])\n```\nThe
      distinct integer values of \\( k \\) that make the polynomial \\( x^2 + kx +
      36 \\) have two distinct integer roots are \\(-37, -20, -15, \\text{and} -13\\).\n\nTherefore,
      the number of such values of \\( k \\) is:\n\n\\[\n\\boxed{4}\n\\]\n'
model-index:
- name: NuminaMath-7B-TIR
  results: []
---

# NikolayKozloff/NuminaMath-7B-TIR-IQ4_NL-GGUF
This model was converted to GGUF format from [`AI-MO/NuminaMath-7B-TIR`](https://huggingface.co/AI-MO/NuminaMath-7B-TIR) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/AI-MO/NuminaMath-7B-TIR) for more details on the model.

## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo NikolayKozloff/NuminaMath-7B-TIR-IQ4_NL-GGUF --hf-file numinamath-7b-tir-iq4_nl-imat.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo NikolayKozloff/NuminaMath-7B-TIR-IQ4_NL-GGUF --hf-file numinamath-7b-tir-iq4_nl-imat.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo NikolayKozloff/NuminaMath-7B-TIR-IQ4_NL-GGUF --hf-file numinamath-7b-tir-iq4_nl-imat.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo NikolayKozloff/NuminaMath-7B-TIR-IQ4_NL-GGUF --hf-file numinamath-7b-tir-iq4_nl-imat.gguf -c 2048
```