End of training
Browse files- README.md +277 -0
- all_results.json +13 -0
- config.json +65 -0
- eval_results.json +8 -0
- preprocessor_config.json +22 -0
- pytorch_model.bin +3 -0
- train_results.json +8 -0
- trainer_state.json +2068 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/swin-tiny-patch4-window7-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: swin-tiny-patch4-window7-224-finetuned-ADC-4cls-0922
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: test
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.7
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# swin-tiny-patch4-window7-224-finetuned-ADC-4cls-0922
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.8947
|
36 |
+
- Accuracy: 0.7
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.0001
|
56 |
+
- train_batch_size: 64
|
57 |
+
- eval_batch_size: 64
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 256
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.2
|
64 |
+
- num_epochs: 200
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| No log | 1.0 | 2 | 0.9655 | 0.6714 |
|
71 |
+
| No log | 2.0 | 4 | 0.9654 | 0.6571 |
|
72 |
+
| No log | 3.0 | 6 | 0.9651 | 0.6571 |
|
73 |
+
| No log | 4.0 | 8 | 0.9647 | 0.6571 |
|
74 |
+
| 1.0064 | 5.0 | 10 | 0.9641 | 0.6571 |
|
75 |
+
| 1.0064 | 6.0 | 12 | 0.9635 | 0.6571 |
|
76 |
+
| 1.0064 | 7.0 | 14 | 0.9629 | 0.6571 |
|
77 |
+
| 1.0064 | 8.0 | 16 | 0.9623 | 0.6571 |
|
78 |
+
| 1.0064 | 9.0 | 18 | 0.9617 | 0.6571 |
|
79 |
+
| 0.9821 | 10.0 | 20 | 0.9611 | 0.6571 |
|
80 |
+
| 0.9821 | 11.0 | 22 | 0.9607 | 0.6571 |
|
81 |
+
| 0.9821 | 12.0 | 24 | 0.9604 | 0.6714 |
|
82 |
+
| 0.9821 | 13.0 | 26 | 0.9601 | 0.6714 |
|
83 |
+
| 0.9821 | 14.0 | 28 | 0.9597 | 0.6714 |
|
84 |
+
| 1.0278 | 15.0 | 30 | 0.9592 | 0.6714 |
|
85 |
+
| 1.0278 | 16.0 | 32 | 0.9581 | 0.6714 |
|
86 |
+
| 1.0278 | 17.0 | 34 | 0.9567 | 0.6714 |
|
87 |
+
| 1.0278 | 18.0 | 36 | 0.9551 | 0.6714 |
|
88 |
+
| 1.0278 | 19.0 | 38 | 0.9534 | 0.6714 |
|
89 |
+
| 0.9986 | 20.0 | 40 | 0.9514 | 0.6571 |
|
90 |
+
| 0.9986 | 21.0 | 42 | 0.9493 | 0.6571 |
|
91 |
+
| 0.9986 | 22.0 | 44 | 0.9472 | 0.6429 |
|
92 |
+
| 0.9986 | 23.0 | 46 | 0.9452 | 0.6429 |
|
93 |
+
| 0.9986 | 24.0 | 48 | 0.9434 | 0.6429 |
|
94 |
+
| 0.9973 | 25.0 | 50 | 0.9420 | 0.6429 |
|
95 |
+
| 0.9973 | 26.0 | 52 | 0.9405 | 0.6429 |
|
96 |
+
| 0.9973 | 27.0 | 54 | 0.9387 | 0.6286 |
|
97 |
+
| 0.9973 | 28.0 | 56 | 0.9376 | 0.6286 |
|
98 |
+
| 0.9973 | 29.0 | 58 | 0.9368 | 0.6429 |
|
99 |
+
| 0.9936 | 30.0 | 60 | 0.9362 | 0.6429 |
|
100 |
+
| 0.9936 | 31.0 | 62 | 0.9361 | 0.6571 |
|
101 |
+
| 0.9936 | 32.0 | 64 | 0.9364 | 0.6714 |
|
102 |
+
| 0.9936 | 33.0 | 66 | 0.9371 | 0.6714 |
|
103 |
+
| 0.9936 | 34.0 | 68 | 0.9380 | 0.6429 |
|
104 |
+
| 0.9746 | 35.0 | 70 | 0.9380 | 0.6571 |
|
105 |
+
| 0.9746 | 36.0 | 72 | 0.9375 | 0.6714 |
|
106 |
+
| 0.9746 | 37.0 | 74 | 0.9380 | 0.6714 |
|
107 |
+
| 0.9746 | 38.0 | 76 | 0.9375 | 0.6714 |
|
108 |
+
| 0.9746 | 39.0 | 78 | 0.9370 | 0.6714 |
|
109 |
+
| 1.0113 | 40.0 | 80 | 0.9362 | 0.6714 |
|
110 |
+
| 1.0113 | 41.0 | 82 | 0.9341 | 0.6714 |
|
111 |
+
| 1.0113 | 42.0 | 84 | 0.9301 | 0.6857 |
|
112 |
+
| 1.0113 | 43.0 | 86 | 0.9260 | 0.6714 |
|
113 |
+
| 1.0113 | 44.0 | 88 | 0.9224 | 0.6571 |
|
114 |
+
| 0.9756 | 45.0 | 90 | 0.9190 | 0.6714 |
|
115 |
+
| 0.9756 | 46.0 | 92 | 0.9154 | 0.6714 |
|
116 |
+
| 0.9756 | 47.0 | 94 | 0.9123 | 0.6714 |
|
117 |
+
| 0.9756 | 48.0 | 96 | 0.9091 | 0.6571 |
|
118 |
+
| 0.9756 | 49.0 | 98 | 0.9071 | 0.6571 |
|
119 |
+
| 0.9721 | 50.0 | 100 | 0.9056 | 0.6571 |
|
120 |
+
| 0.9721 | 51.0 | 102 | 0.9047 | 0.6571 |
|
121 |
+
| 0.9721 | 52.0 | 104 | 0.9039 | 0.6571 |
|
122 |
+
| 0.9721 | 53.0 | 106 | 0.9031 | 0.6714 |
|
123 |
+
| 0.9721 | 54.0 | 108 | 0.9025 | 0.6714 |
|
124 |
+
| 0.9698 | 55.0 | 110 | 0.9023 | 0.6714 |
|
125 |
+
| 0.9698 | 56.0 | 112 | 0.9012 | 0.6714 |
|
126 |
+
| 0.9698 | 57.0 | 114 | 0.8997 | 0.6714 |
|
127 |
+
| 0.9698 | 58.0 | 116 | 0.8982 | 0.6714 |
|
128 |
+
| 0.9698 | 59.0 | 118 | 0.8970 | 0.6714 |
|
129 |
+
| 0.9341 | 60.0 | 120 | 0.8957 | 0.6857 |
|
130 |
+
| 0.9341 | 61.0 | 122 | 0.8947 | 0.7 |
|
131 |
+
| 0.9341 | 62.0 | 124 | 0.8940 | 0.7 |
|
132 |
+
| 0.9341 | 63.0 | 126 | 0.8941 | 0.6714 |
|
133 |
+
| 0.9341 | 64.0 | 128 | 0.8934 | 0.6714 |
|
134 |
+
| 0.9717 | 65.0 | 130 | 0.8917 | 0.6714 |
|
135 |
+
| 0.9717 | 66.0 | 132 | 0.8898 | 0.6857 |
|
136 |
+
| 0.9717 | 67.0 | 134 | 0.8884 | 0.6857 |
|
137 |
+
| 0.9717 | 68.0 | 136 | 0.8870 | 0.6857 |
|
138 |
+
| 0.9717 | 69.0 | 138 | 0.8854 | 0.6857 |
|
139 |
+
| 0.9655 | 70.0 | 140 | 0.8840 | 0.6857 |
|
140 |
+
| 0.9655 | 71.0 | 142 | 0.8827 | 0.6857 |
|
141 |
+
| 0.9655 | 72.0 | 144 | 0.8814 | 0.6857 |
|
142 |
+
| 0.9655 | 73.0 | 146 | 0.8805 | 0.6857 |
|
143 |
+
| 0.9655 | 74.0 | 148 | 0.8803 | 0.6857 |
|
144 |
+
| 0.9458 | 75.0 | 150 | 0.8802 | 0.6857 |
|
145 |
+
| 0.9458 | 76.0 | 152 | 0.8797 | 0.6714 |
|
146 |
+
| 0.9458 | 77.0 | 154 | 0.8794 | 0.6714 |
|
147 |
+
| 0.9458 | 78.0 | 156 | 0.8796 | 0.6714 |
|
148 |
+
| 0.9458 | 79.0 | 158 | 0.8808 | 0.6714 |
|
149 |
+
| 0.9094 | 80.0 | 160 | 0.8817 | 0.6714 |
|
150 |
+
| 0.9094 | 81.0 | 162 | 0.8828 | 0.6714 |
|
151 |
+
| 0.9094 | 82.0 | 164 | 0.8836 | 0.6714 |
|
152 |
+
| 0.9094 | 83.0 | 166 | 0.8830 | 0.6714 |
|
153 |
+
| 0.9094 | 84.0 | 168 | 0.8821 | 0.6571 |
|
154 |
+
| 0.8719 | 85.0 | 170 | 0.8813 | 0.6571 |
|
155 |
+
| 0.8719 | 86.0 | 172 | 0.8804 | 0.6714 |
|
156 |
+
| 0.8719 | 87.0 | 174 | 0.8798 | 0.6571 |
|
157 |
+
| 0.8719 | 88.0 | 176 | 0.8787 | 0.6571 |
|
158 |
+
| 0.8719 | 89.0 | 178 | 0.8770 | 0.6571 |
|
159 |
+
| 0.9288 | 90.0 | 180 | 0.8752 | 0.6857 |
|
160 |
+
| 0.9288 | 91.0 | 182 | 0.8722 | 0.6857 |
|
161 |
+
| 0.9288 | 92.0 | 184 | 0.8694 | 0.6714 |
|
162 |
+
| 0.9288 | 93.0 | 186 | 0.8670 | 0.6714 |
|
163 |
+
| 0.9288 | 94.0 | 188 | 0.8645 | 0.6857 |
|
164 |
+
| 0.9039 | 95.0 | 190 | 0.8624 | 0.6857 |
|
165 |
+
| 0.9039 | 96.0 | 192 | 0.8603 | 0.6714 |
|
166 |
+
| 0.9039 | 97.0 | 194 | 0.8584 | 0.6857 |
|
167 |
+
| 0.9039 | 98.0 | 196 | 0.8566 | 0.6857 |
|
168 |
+
| 0.9039 | 99.0 | 198 | 0.8553 | 0.6857 |
|
169 |
+
| 0.9081 | 100.0 | 200 | 0.8550 | 0.6857 |
|
170 |
+
| 0.9081 | 101.0 | 202 | 0.8551 | 0.6857 |
|
171 |
+
| 0.9081 | 102.0 | 204 | 0.8556 | 0.6857 |
|
172 |
+
| 0.9081 | 103.0 | 206 | 0.8558 | 0.6857 |
|
173 |
+
| 0.9081 | 104.0 | 208 | 0.8554 | 0.6857 |
|
174 |
+
| 0.9142 | 105.0 | 210 | 0.8551 | 0.6857 |
|
175 |
+
| 0.9142 | 106.0 | 212 | 0.8553 | 0.6857 |
|
176 |
+
| 0.9142 | 107.0 | 214 | 0.8551 | 0.6857 |
|
177 |
+
| 0.9142 | 108.0 | 216 | 0.8549 | 0.6857 |
|
178 |
+
| 0.9142 | 109.0 | 218 | 0.8549 | 0.6857 |
|
179 |
+
| 0.9347 | 110.0 | 220 | 0.8551 | 0.6714 |
|
180 |
+
| 0.9347 | 111.0 | 222 | 0.8554 | 0.6714 |
|
181 |
+
| 0.9347 | 112.0 | 224 | 0.8548 | 0.6714 |
|
182 |
+
| 0.9347 | 113.0 | 226 | 0.8538 | 0.6714 |
|
183 |
+
| 0.9347 | 114.0 | 228 | 0.8525 | 0.6714 |
|
184 |
+
| 0.8922 | 115.0 | 230 | 0.8512 | 0.6857 |
|
185 |
+
| 0.8922 | 116.0 | 232 | 0.8505 | 0.6857 |
|
186 |
+
| 0.8922 | 117.0 | 234 | 0.8495 | 0.6857 |
|
187 |
+
| 0.8922 | 118.0 | 236 | 0.8484 | 0.6857 |
|
188 |
+
| 0.8922 | 119.0 | 238 | 0.8472 | 0.6857 |
|
189 |
+
| 0.8897 | 120.0 | 240 | 0.8456 | 0.6857 |
|
190 |
+
| 0.8897 | 121.0 | 242 | 0.8440 | 0.6857 |
|
191 |
+
| 0.8897 | 122.0 | 244 | 0.8426 | 0.6714 |
|
192 |
+
| 0.8897 | 123.0 | 246 | 0.8412 | 0.6857 |
|
193 |
+
| 0.8897 | 124.0 | 248 | 0.8396 | 0.6857 |
|
194 |
+
| 0.8829 | 125.0 | 250 | 0.8384 | 0.6857 |
|
195 |
+
| 0.8829 | 126.0 | 252 | 0.8373 | 0.6857 |
|
196 |
+
| 0.8829 | 127.0 | 254 | 0.8365 | 0.6857 |
|
197 |
+
| 0.8829 | 128.0 | 256 | 0.8360 | 0.6857 |
|
198 |
+
| 0.8829 | 129.0 | 258 | 0.8353 | 0.6857 |
|
199 |
+
| 0.8744 | 130.0 | 260 | 0.8344 | 0.6857 |
|
200 |
+
| 0.8744 | 131.0 | 262 | 0.8337 | 0.6714 |
|
201 |
+
| 0.8744 | 132.0 | 264 | 0.8329 | 0.6857 |
|
202 |
+
| 0.8744 | 133.0 | 266 | 0.8325 | 0.6857 |
|
203 |
+
| 0.8744 | 134.0 | 268 | 0.8318 | 0.6857 |
|
204 |
+
| 0.8657 | 135.0 | 270 | 0.8312 | 0.6857 |
|
205 |
+
| 0.8657 | 136.0 | 272 | 0.8306 | 0.6714 |
|
206 |
+
| 0.8657 | 137.0 | 274 | 0.8300 | 0.6714 |
|
207 |
+
| 0.8657 | 138.0 | 276 | 0.8296 | 0.6714 |
|
208 |
+
| 0.8657 | 139.0 | 278 | 0.8294 | 0.6714 |
|
209 |
+
| 0.9421 | 140.0 | 280 | 0.8292 | 0.6714 |
|
210 |
+
| 0.9421 | 141.0 | 282 | 0.8291 | 0.6714 |
|
211 |
+
| 0.9421 | 142.0 | 284 | 0.8290 | 0.6714 |
|
212 |
+
| 0.9421 | 143.0 | 286 | 0.8290 | 0.6857 |
|
213 |
+
| 0.9421 | 144.0 | 288 | 0.8289 | 0.6857 |
|
214 |
+
| 0.9066 | 145.0 | 290 | 0.8287 | 0.6857 |
|
215 |
+
| 0.9066 | 146.0 | 292 | 0.8290 | 0.6857 |
|
216 |
+
| 0.9066 | 147.0 | 294 | 0.8293 | 0.6857 |
|
217 |
+
| 0.9066 | 148.0 | 296 | 0.8294 | 0.6857 |
|
218 |
+
| 0.9066 | 149.0 | 298 | 0.8295 | 0.6857 |
|
219 |
+
| 0.9068 | 150.0 | 300 | 0.8295 | 0.6857 |
|
220 |
+
| 0.9068 | 151.0 | 302 | 0.8294 | 0.6857 |
|
221 |
+
| 0.9068 | 152.0 | 304 | 0.8293 | 0.6857 |
|
222 |
+
| 0.9068 | 153.0 | 306 | 0.8293 | 0.6857 |
|
223 |
+
| 0.9068 | 154.0 | 308 | 0.8290 | 0.6857 |
|
224 |
+
| 0.8715 | 155.0 | 310 | 0.8287 | 0.6857 |
|
225 |
+
| 0.8715 | 156.0 | 312 | 0.8283 | 0.6857 |
|
226 |
+
| 0.8715 | 157.0 | 314 | 0.8277 | 0.6857 |
|
227 |
+
| 0.8715 | 158.0 | 316 | 0.8274 | 0.6857 |
|
228 |
+
| 0.8715 | 159.0 | 318 | 0.8269 | 0.6857 |
|
229 |
+
| 0.8921 | 160.0 | 320 | 0.8266 | 0.6857 |
|
230 |
+
| 0.8921 | 161.0 | 322 | 0.8264 | 0.6857 |
|
231 |
+
| 0.8921 | 162.0 | 324 | 0.8261 | 0.6857 |
|
232 |
+
| 0.8921 | 163.0 | 326 | 0.8260 | 0.6857 |
|
233 |
+
| 0.8921 | 164.0 | 328 | 0.8258 | 0.6857 |
|
234 |
+
| 0.8768 | 165.0 | 330 | 0.8252 | 0.6857 |
|
235 |
+
| 0.8768 | 166.0 | 332 | 0.8248 | 0.6857 |
|
236 |
+
| 0.8768 | 167.0 | 334 | 0.8243 | 0.6857 |
|
237 |
+
| 0.8768 | 168.0 | 336 | 0.8237 | 0.6857 |
|
238 |
+
| 0.8768 | 169.0 | 338 | 0.8231 | 0.6857 |
|
239 |
+
| 0.8519 | 170.0 | 340 | 0.8227 | 0.6857 |
|
240 |
+
| 0.8519 | 171.0 | 342 | 0.8223 | 0.6857 |
|
241 |
+
| 0.8519 | 172.0 | 344 | 0.8221 | 0.6857 |
|
242 |
+
| 0.8519 | 173.0 | 346 | 0.8220 | 0.6857 |
|
243 |
+
| 0.8519 | 174.0 | 348 | 0.8218 | 0.6857 |
|
244 |
+
| 0.92 | 175.0 | 350 | 0.8215 | 0.6857 |
|
245 |
+
| 0.92 | 176.0 | 352 | 0.8211 | 0.7 |
|
246 |
+
| 0.92 | 177.0 | 354 | 0.8207 | 0.7 |
|
247 |
+
| 0.92 | 178.0 | 356 | 0.8204 | 0.7 |
|
248 |
+
| 0.92 | 179.0 | 358 | 0.8200 | 0.7 |
|
249 |
+
| 0.879 | 180.0 | 360 | 0.8197 | 0.7 |
|
250 |
+
| 0.879 | 181.0 | 362 | 0.8194 | 0.7 |
|
251 |
+
| 0.879 | 182.0 | 364 | 0.8191 | 0.6857 |
|
252 |
+
| 0.879 | 183.0 | 366 | 0.8187 | 0.6857 |
|
253 |
+
| 0.879 | 184.0 | 368 | 0.8185 | 0.7 |
|
254 |
+
| 0.8893 | 185.0 | 370 | 0.8182 | 0.7 |
|
255 |
+
| 0.8893 | 186.0 | 372 | 0.8180 | 0.7 |
|
256 |
+
| 0.8893 | 187.0 | 374 | 0.8177 | 0.7 |
|
257 |
+
| 0.8893 | 188.0 | 376 | 0.8176 | 0.7 |
|
258 |
+
| 0.8893 | 189.0 | 378 | 0.8175 | 0.7 |
|
259 |
+
| 0.8501 | 190.0 | 380 | 0.8173 | 0.7 |
|
260 |
+
| 0.8501 | 191.0 | 382 | 0.8171 | 0.7 |
|
261 |
+
| 0.8501 | 192.0 | 384 | 0.8170 | 0.7 |
|
262 |
+
| 0.8501 | 193.0 | 386 | 0.8169 | 0.7 |
|
263 |
+
| 0.8501 | 194.0 | 388 | 0.8169 | 0.7 |
|
264 |
+
| 0.8611 | 195.0 | 390 | 0.8168 | 0.7 |
|
265 |
+
| 0.8611 | 196.0 | 392 | 0.8168 | 0.7 |
|
266 |
+
| 0.8611 | 197.0 | 394 | 0.8168 | 0.7 |
|
267 |
+
| 0.8611 | 198.0 | 396 | 0.8168 | 0.7 |
|
268 |
+
| 0.8611 | 199.0 | 398 | 0.8168 | 0.7 |
|
269 |
+
| 0.8881 | 200.0 | 400 | 0.8168 | 0.7 |
|
270 |
+
|
271 |
+
|
272 |
+
### Framework versions
|
273 |
+
|
274 |
+
- Transformers 4.33.2
|
275 |
+
- Pytorch 2.0.1+cu118
|
276 |
+
- Datasets 2.14.5
|
277 |
+
- Tokenizers 0.13.3
|
all_results.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 200.0,
|
3 |
+
"eval_accuracy": 0.7,
|
4 |
+
"eval_loss": 0.8946982622146606,
|
5 |
+
"eval_runtime": 0.7238,
|
6 |
+
"eval_samples_per_second": 96.708,
|
7 |
+
"eval_steps_per_second": 2.763,
|
8 |
+
"total_flos": 2.2371640252416e+18,
|
9 |
+
"train_loss": 0.9259392237663269,
|
10 |
+
"train_runtime": 1042.9233,
|
11 |
+
"train_samples_per_second": 86.296,
|
12 |
+
"train_steps_per_second": 0.384
|
13 |
+
}
|
config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/swin-tiny-patch4-window7-224",
|
3 |
+
"architectures": [
|
4 |
+
"SwinForImageClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"depths": [
|
8 |
+
2,
|
9 |
+
2,
|
10 |
+
6,
|
11 |
+
2
|
12 |
+
],
|
13 |
+
"drop_path_rate": 0.1,
|
14 |
+
"embed_dim": 96,
|
15 |
+
"encoder_stride": 32,
|
16 |
+
"hidden_act": "gelu",
|
17 |
+
"hidden_dropout_prob": 0.0,
|
18 |
+
"hidden_size": 768,
|
19 |
+
"id2label": {
|
20 |
+
"0": "Color",
|
21 |
+
"1": "Pattern_fail",
|
22 |
+
"2": "Residue",
|
23 |
+
"3": "Tiny"
|
24 |
+
},
|
25 |
+
"image_size": 224,
|
26 |
+
"initializer_range": 0.02,
|
27 |
+
"label2id": {
|
28 |
+
"Color": 0,
|
29 |
+
"Pattern_fail": 1,
|
30 |
+
"Residue": 2,
|
31 |
+
"Tiny": 3
|
32 |
+
},
|
33 |
+
"layer_norm_eps": 1e-05,
|
34 |
+
"mlp_ratio": 4.0,
|
35 |
+
"model_type": "swin",
|
36 |
+
"num_channels": 3,
|
37 |
+
"num_heads": [
|
38 |
+
3,
|
39 |
+
6,
|
40 |
+
12,
|
41 |
+
24
|
42 |
+
],
|
43 |
+
"num_layers": 4,
|
44 |
+
"out_features": [
|
45 |
+
"stage4"
|
46 |
+
],
|
47 |
+
"out_indices": [
|
48 |
+
4
|
49 |
+
],
|
50 |
+
"patch_size": 4,
|
51 |
+
"path_norm": true,
|
52 |
+
"problem_type": "single_label_classification",
|
53 |
+
"qkv_bias": true,
|
54 |
+
"stage_names": [
|
55 |
+
"stem",
|
56 |
+
"stage1",
|
57 |
+
"stage2",
|
58 |
+
"stage3",
|
59 |
+
"stage4"
|
60 |
+
],
|
61 |
+
"torch_dtype": "float32",
|
62 |
+
"transformers_version": "4.33.2",
|
63 |
+
"use_absolute_embeddings": false,
|
64 |
+
"window_size": 7
|
65 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 200.0,
|
3 |
+
"eval_accuracy": 0.7,
|
4 |
+
"eval_loss": 0.8946982622146606,
|
5 |
+
"eval_runtime": 0.7238,
|
6 |
+
"eval_samples_per_second": 96.708,
|
7 |
+
"eval_steps_per_second": 2.763
|
8 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"do_rescale": true,
|
4 |
+
"do_resize": true,
|
5 |
+
"image_mean": [
|
6 |
+
0.485,
|
7 |
+
0.456,
|
8 |
+
0.406
|
9 |
+
],
|
10 |
+
"image_processor_type": "ViTImageProcessor",
|
11 |
+
"image_std": [
|
12 |
+
0.229,
|
13 |
+
0.224,
|
14 |
+
0.225
|
15 |
+
],
|
16 |
+
"resample": 3,
|
17 |
+
"rescale_factor": 0.00392156862745098,
|
18 |
+
"size": {
|
19 |
+
"height": 224,
|
20 |
+
"width": 224
|
21 |
+
}
|
22 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62a1f5e3012f027df146a06447599ad9dc2f8df67b5acdfa20294a637223905e
|
3 |
+
size 110401009
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 200.0,
|
3 |
+
"total_flos": 2.2371640252416e+18,
|
4 |
+
"train_loss": 0.9259392237663269,
|
5 |
+
"train_runtime": 1042.9233,
|
6 |
+
"train_samples_per_second": 86.296,
|
7 |
+
"train_steps_per_second": 0.384
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2068 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.7,
|
3 |
+
"best_model_checkpoint": "swin-tiny-patch4-window7-224-finetuned-ADC-4cls-0922/checkpoint-122",
|
4 |
+
"epoch": 200.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 400,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 1.0,
|
13 |
+
"eval_accuracy": 0.6714285714285714,
|
14 |
+
"eval_loss": 0.9655490517616272,
|
15 |
+
"eval_runtime": 0.8298,
|
16 |
+
"eval_samples_per_second": 84.356,
|
17 |
+
"eval_steps_per_second": 2.41,
|
18 |
+
"step": 2
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"epoch": 2.0,
|
22 |
+
"eval_accuracy": 0.6571428571428571,
|
23 |
+
"eval_loss": 0.9653854370117188,
|
24 |
+
"eval_runtime": 0.6383,
|
25 |
+
"eval_samples_per_second": 109.671,
|
26 |
+
"eval_steps_per_second": 3.133,
|
27 |
+
"step": 4
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 3.0,
|
31 |
+
"eval_accuracy": 0.6571428571428571,
|
32 |
+
"eval_loss": 0.9650949835777283,
|
33 |
+
"eval_runtime": 0.6412,
|
34 |
+
"eval_samples_per_second": 109.167,
|
35 |
+
"eval_steps_per_second": 3.119,
|
36 |
+
"step": 6
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"epoch": 4.0,
|
40 |
+
"eval_accuracy": 0.6571428571428571,
|
41 |
+
"eval_loss": 0.9646532535552979,
|
42 |
+
"eval_runtime": 0.8218,
|
43 |
+
"eval_samples_per_second": 85.18,
|
44 |
+
"eval_steps_per_second": 2.434,
|
45 |
+
"step": 8
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 5.0,
|
49 |
+
"learning_rate": 1.25e-05,
|
50 |
+
"loss": 1.0064,
|
51 |
+
"step": 10
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 5.0,
|
55 |
+
"eval_accuracy": 0.6571428571428571,
|
56 |
+
"eval_loss": 0.9641380310058594,
|
57 |
+
"eval_runtime": 0.6452,
|
58 |
+
"eval_samples_per_second": 108.491,
|
59 |
+
"eval_steps_per_second": 3.1,
|
60 |
+
"step": 10
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"epoch": 6.0,
|
64 |
+
"eval_accuracy": 0.6571428571428571,
|
65 |
+
"eval_loss": 0.9635317921638489,
|
66 |
+
"eval_runtime": 0.6347,
|
67 |
+
"eval_samples_per_second": 110.284,
|
68 |
+
"eval_steps_per_second": 3.151,
|
69 |
+
"step": 12
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 7.0,
|
73 |
+
"eval_accuracy": 0.6571428571428571,
|
74 |
+
"eval_loss": 0.9628700017929077,
|
75 |
+
"eval_runtime": 0.8273,
|
76 |
+
"eval_samples_per_second": 84.611,
|
77 |
+
"eval_steps_per_second": 2.417,
|
78 |
+
"step": 14
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"epoch": 8.0,
|
82 |
+
"eval_accuracy": 0.6571428571428571,
|
83 |
+
"eval_loss": 0.9623274803161621,
|
84 |
+
"eval_runtime": 0.6551,
|
85 |
+
"eval_samples_per_second": 106.859,
|
86 |
+
"eval_steps_per_second": 3.053,
|
87 |
+
"step": 16
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 9.0,
|
91 |
+
"eval_accuracy": 0.6571428571428571,
|
92 |
+
"eval_loss": 0.9616996645927429,
|
93 |
+
"eval_runtime": 0.646,
|
94 |
+
"eval_samples_per_second": 108.363,
|
95 |
+
"eval_steps_per_second": 3.096,
|
96 |
+
"step": 18
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"epoch": 10.0,
|
100 |
+
"learning_rate": 2.5e-05,
|
101 |
+
"loss": 0.9821,
|
102 |
+
"step": 20
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"epoch": 10.0,
|
106 |
+
"eval_accuracy": 0.6571428571428571,
|
107 |
+
"eval_loss": 0.9611372947692871,
|
108 |
+
"eval_runtime": 0.8313,
|
109 |
+
"eval_samples_per_second": 84.202,
|
110 |
+
"eval_steps_per_second": 2.406,
|
111 |
+
"step": 20
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 11.0,
|
115 |
+
"eval_accuracy": 0.6571428571428571,
|
116 |
+
"eval_loss": 0.9607454538345337,
|
117 |
+
"eval_runtime": 0.8335,
|
118 |
+
"eval_samples_per_second": 83.985,
|
119 |
+
"eval_steps_per_second": 2.4,
|
120 |
+
"step": 22
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"epoch": 12.0,
|
124 |
+
"eval_accuracy": 0.6714285714285714,
|
125 |
+
"eval_loss": 0.9604489207267761,
|
126 |
+
"eval_runtime": 0.8194,
|
127 |
+
"eval_samples_per_second": 85.429,
|
128 |
+
"eval_steps_per_second": 2.441,
|
129 |
+
"step": 24
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 13.0,
|
133 |
+
"eval_accuracy": 0.6714285714285714,
|
134 |
+
"eval_loss": 0.9601203799247742,
|
135 |
+
"eval_runtime": 0.8211,
|
136 |
+
"eval_samples_per_second": 85.256,
|
137 |
+
"eval_steps_per_second": 2.436,
|
138 |
+
"step": 26
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"epoch": 14.0,
|
142 |
+
"eval_accuracy": 0.6714285714285714,
|
143 |
+
"eval_loss": 0.9597390294075012,
|
144 |
+
"eval_runtime": 0.6563,
|
145 |
+
"eval_samples_per_second": 106.663,
|
146 |
+
"eval_steps_per_second": 3.048,
|
147 |
+
"step": 28
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 15.0,
|
151 |
+
"learning_rate": 3.7500000000000003e-05,
|
152 |
+
"loss": 1.0278,
|
153 |
+
"step": 30
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 15.0,
|
157 |
+
"eval_accuracy": 0.6714285714285714,
|
158 |
+
"eval_loss": 0.9591529965400696,
|
159 |
+
"eval_runtime": 0.6495,
|
160 |
+
"eval_samples_per_second": 107.778,
|
161 |
+
"eval_steps_per_second": 3.079,
|
162 |
+
"step": 30
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"epoch": 16.0,
|
166 |
+
"eval_accuracy": 0.6714285714285714,
|
167 |
+
"eval_loss": 0.9581246376037598,
|
168 |
+
"eval_runtime": 0.791,
|
169 |
+
"eval_samples_per_second": 88.495,
|
170 |
+
"eval_steps_per_second": 2.528,
|
171 |
+
"step": 32
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 17.0,
|
175 |
+
"eval_accuracy": 0.6714285714285714,
|
176 |
+
"eval_loss": 0.9566996097564697,
|
177 |
+
"eval_runtime": 0.6461,
|
178 |
+
"eval_samples_per_second": 108.347,
|
179 |
+
"eval_steps_per_second": 3.096,
|
180 |
+
"step": 34
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"epoch": 18.0,
|
184 |
+
"eval_accuracy": 0.6714285714285714,
|
185 |
+
"eval_loss": 0.9551236629486084,
|
186 |
+
"eval_runtime": 0.6456,
|
187 |
+
"eval_samples_per_second": 108.429,
|
188 |
+
"eval_steps_per_second": 3.098,
|
189 |
+
"step": 36
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 19.0,
|
193 |
+
"eval_accuracy": 0.6714285714285714,
|
194 |
+
"eval_loss": 0.9534342288970947,
|
195 |
+
"eval_runtime": 0.8038,
|
196 |
+
"eval_samples_per_second": 87.083,
|
197 |
+
"eval_steps_per_second": 2.488,
|
198 |
+
"step": 38
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 20.0,
|
202 |
+
"learning_rate": 5e-05,
|
203 |
+
"loss": 0.9986,
|
204 |
+
"step": 40
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 20.0,
|
208 |
+
"eval_accuracy": 0.6571428571428571,
|
209 |
+
"eval_loss": 0.9513913989067078,
|
210 |
+
"eval_runtime": 0.6423,
|
211 |
+
"eval_samples_per_second": 108.98,
|
212 |
+
"eval_steps_per_second": 3.114,
|
213 |
+
"step": 40
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 21.0,
|
217 |
+
"eval_accuracy": 0.6571428571428571,
|
218 |
+
"eval_loss": 0.9493252635002136,
|
219 |
+
"eval_runtime": 0.6401,
|
220 |
+
"eval_samples_per_second": 109.357,
|
221 |
+
"eval_steps_per_second": 3.124,
|
222 |
+
"step": 42
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"epoch": 22.0,
|
226 |
+
"eval_accuracy": 0.6428571428571429,
|
227 |
+
"eval_loss": 0.9471749663352966,
|
228 |
+
"eval_runtime": 0.7957,
|
229 |
+
"eval_samples_per_second": 87.97,
|
230 |
+
"eval_steps_per_second": 2.513,
|
231 |
+
"step": 44
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 23.0,
|
235 |
+
"eval_accuracy": 0.6428571428571429,
|
236 |
+
"eval_loss": 0.9451875686645508,
|
237 |
+
"eval_runtime": 0.6379,
|
238 |
+
"eval_samples_per_second": 109.728,
|
239 |
+
"eval_steps_per_second": 3.135,
|
240 |
+
"step": 46
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 24.0,
|
244 |
+
"eval_accuracy": 0.6428571428571429,
|
245 |
+
"eval_loss": 0.943417489528656,
|
246 |
+
"eval_runtime": 0.6466,
|
247 |
+
"eval_samples_per_second": 108.259,
|
248 |
+
"eval_steps_per_second": 3.093,
|
249 |
+
"step": 48
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 25.0,
|
253 |
+
"learning_rate": 6.25e-05,
|
254 |
+
"loss": 0.9973,
|
255 |
+
"step": 50
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 25.0,
|
259 |
+
"eval_accuracy": 0.6428571428571429,
|
260 |
+
"eval_loss": 0.9419717788696289,
|
261 |
+
"eval_runtime": 0.8115,
|
262 |
+
"eval_samples_per_second": 86.264,
|
263 |
+
"eval_steps_per_second": 2.465,
|
264 |
+
"step": 50
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 26.0,
|
268 |
+
"eval_accuracy": 0.6428571428571429,
|
269 |
+
"eval_loss": 0.9404588937759399,
|
270 |
+
"eval_runtime": 0.6332,
|
271 |
+
"eval_samples_per_second": 110.551,
|
272 |
+
"eval_steps_per_second": 3.159,
|
273 |
+
"step": 52
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 27.0,
|
277 |
+
"eval_accuracy": 0.6285714285714286,
|
278 |
+
"eval_loss": 0.9387302994728088,
|
279 |
+
"eval_runtime": 0.64,
|
280 |
+
"eval_samples_per_second": 109.375,
|
281 |
+
"eval_steps_per_second": 3.125,
|
282 |
+
"step": 54
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 28.0,
|
286 |
+
"eval_accuracy": 0.6285714285714286,
|
287 |
+
"eval_loss": 0.9375677704811096,
|
288 |
+
"eval_runtime": 0.8312,
|
289 |
+
"eval_samples_per_second": 84.219,
|
290 |
+
"eval_steps_per_second": 2.406,
|
291 |
+
"step": 56
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 29.0,
|
295 |
+
"eval_accuracy": 0.6428571428571429,
|
296 |
+
"eval_loss": 0.9368333220481873,
|
297 |
+
"eval_runtime": 0.6385,
|
298 |
+
"eval_samples_per_second": 109.629,
|
299 |
+
"eval_steps_per_second": 3.132,
|
300 |
+
"step": 58
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"epoch": 30.0,
|
304 |
+
"learning_rate": 7.500000000000001e-05,
|
305 |
+
"loss": 0.9936,
|
306 |
+
"step": 60
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 30.0,
|
310 |
+
"eval_accuracy": 0.6428571428571429,
|
311 |
+
"eval_loss": 0.9361710548400879,
|
312 |
+
"eval_runtime": 0.6573,
|
313 |
+
"eval_samples_per_second": 106.497,
|
314 |
+
"eval_steps_per_second": 3.043,
|
315 |
+
"step": 60
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 31.0,
|
319 |
+
"eval_accuracy": 0.6571428571428571,
|
320 |
+
"eval_loss": 0.9361298680305481,
|
321 |
+
"eval_runtime": 0.7944,
|
322 |
+
"eval_samples_per_second": 88.115,
|
323 |
+
"eval_steps_per_second": 2.518,
|
324 |
+
"step": 62
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 32.0,
|
328 |
+
"eval_accuracy": 0.6714285714285714,
|
329 |
+
"eval_loss": 0.9364449381828308,
|
330 |
+
"eval_runtime": 0.6554,
|
331 |
+
"eval_samples_per_second": 106.808,
|
332 |
+
"eval_steps_per_second": 3.052,
|
333 |
+
"step": 64
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 33.0,
|
337 |
+
"eval_accuracy": 0.6714285714285714,
|
338 |
+
"eval_loss": 0.9371016621589661,
|
339 |
+
"eval_runtime": 0.6483,
|
340 |
+
"eval_samples_per_second": 107.97,
|
341 |
+
"eval_steps_per_second": 3.085,
|
342 |
+
"step": 66
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 34.0,
|
346 |
+
"eval_accuracy": 0.6428571428571429,
|
347 |
+
"eval_loss": 0.9379546046257019,
|
348 |
+
"eval_runtime": 0.8119,
|
349 |
+
"eval_samples_per_second": 86.219,
|
350 |
+
"eval_steps_per_second": 2.463,
|
351 |
+
"step": 68
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 35.0,
|
355 |
+
"learning_rate": 8.75e-05,
|
356 |
+
"loss": 0.9746,
|
357 |
+
"step": 70
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 35.0,
|
361 |
+
"eval_accuracy": 0.6571428571428571,
|
362 |
+
"eval_loss": 0.9379692077636719,
|
363 |
+
"eval_runtime": 0.6362,
|
364 |
+
"eval_samples_per_second": 110.031,
|
365 |
+
"eval_steps_per_second": 3.144,
|
366 |
+
"step": 70
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 36.0,
|
370 |
+
"eval_accuracy": 0.6714285714285714,
|
371 |
+
"eval_loss": 0.9374780654907227,
|
372 |
+
"eval_runtime": 0.639,
|
373 |
+
"eval_samples_per_second": 109.543,
|
374 |
+
"eval_steps_per_second": 3.13,
|
375 |
+
"step": 72
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 37.0,
|
379 |
+
"eval_accuracy": 0.6714285714285714,
|
380 |
+
"eval_loss": 0.9379698634147644,
|
381 |
+
"eval_runtime": 0.8343,
|
382 |
+
"eval_samples_per_second": 83.899,
|
383 |
+
"eval_steps_per_second": 2.397,
|
384 |
+
"step": 74
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 38.0,
|
388 |
+
"eval_accuracy": 0.6714285714285714,
|
389 |
+
"eval_loss": 0.9375231862068176,
|
390 |
+
"eval_runtime": 0.6395,
|
391 |
+
"eval_samples_per_second": 109.457,
|
392 |
+
"eval_steps_per_second": 3.127,
|
393 |
+
"step": 76
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 39.0,
|
397 |
+
"eval_accuracy": 0.6714285714285714,
|
398 |
+
"eval_loss": 0.9369739890098572,
|
399 |
+
"eval_runtime": 0.6333,
|
400 |
+
"eval_samples_per_second": 110.536,
|
401 |
+
"eval_steps_per_second": 3.158,
|
402 |
+
"step": 78
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 40.0,
|
406 |
+
"learning_rate": 0.0001,
|
407 |
+
"loss": 1.0113,
|
408 |
+
"step": 80
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 40.0,
|
412 |
+
"eval_accuracy": 0.6714285714285714,
|
413 |
+
"eval_loss": 0.9361743330955505,
|
414 |
+
"eval_runtime": 0.7993,
|
415 |
+
"eval_samples_per_second": 87.579,
|
416 |
+
"eval_steps_per_second": 2.502,
|
417 |
+
"step": 80
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 41.0,
|
421 |
+
"eval_accuracy": 0.6714285714285714,
|
422 |
+
"eval_loss": 0.9340663552284241,
|
423 |
+
"eval_runtime": 0.6461,
|
424 |
+
"eval_samples_per_second": 108.348,
|
425 |
+
"eval_steps_per_second": 3.096,
|
426 |
+
"step": 82
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"epoch": 42.0,
|
430 |
+
"eval_accuracy": 0.6857142857142857,
|
431 |
+
"eval_loss": 0.9300563335418701,
|
432 |
+
"eval_runtime": 0.636,
|
433 |
+
"eval_samples_per_second": 110.058,
|
434 |
+
"eval_steps_per_second": 3.145,
|
435 |
+
"step": 84
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 43.0,
|
439 |
+
"eval_accuracy": 0.6714285714285714,
|
440 |
+
"eval_loss": 0.9259787201881409,
|
441 |
+
"eval_runtime": 0.8154,
|
442 |
+
"eval_samples_per_second": 85.845,
|
443 |
+
"eval_steps_per_second": 2.453,
|
444 |
+
"step": 86
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 44.0,
|
448 |
+
"eval_accuracy": 0.6571428571428571,
|
449 |
+
"eval_loss": 0.9224489331245422,
|
450 |
+
"eval_runtime": 0.6369,
|
451 |
+
"eval_samples_per_second": 109.903,
|
452 |
+
"eval_steps_per_second": 3.14,
|
453 |
+
"step": 88
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 45.0,
|
457 |
+
"learning_rate": 9.687500000000001e-05,
|
458 |
+
"loss": 0.9756,
|
459 |
+
"step": 90
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 45.0,
|
463 |
+
"eval_accuracy": 0.6714285714285714,
|
464 |
+
"eval_loss": 0.9190067648887634,
|
465 |
+
"eval_runtime": 0.6388,
|
466 |
+
"eval_samples_per_second": 109.577,
|
467 |
+
"eval_steps_per_second": 3.131,
|
468 |
+
"step": 90
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"epoch": 46.0,
|
472 |
+
"eval_accuracy": 0.6714285714285714,
|
473 |
+
"eval_loss": 0.9154108166694641,
|
474 |
+
"eval_runtime": 0.7966,
|
475 |
+
"eval_samples_per_second": 87.873,
|
476 |
+
"eval_steps_per_second": 2.511,
|
477 |
+
"step": 92
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 47.0,
|
481 |
+
"eval_accuracy": 0.6714285714285714,
|
482 |
+
"eval_loss": 0.912346363067627,
|
483 |
+
"eval_runtime": 0.6406,
|
484 |
+
"eval_samples_per_second": 109.268,
|
485 |
+
"eval_steps_per_second": 3.122,
|
486 |
+
"step": 94
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 48.0,
|
490 |
+
"eval_accuracy": 0.6571428571428571,
|
491 |
+
"eval_loss": 0.9091367721557617,
|
492 |
+
"eval_runtime": 0.6398,
|
493 |
+
"eval_samples_per_second": 109.41,
|
494 |
+
"eval_steps_per_second": 3.126,
|
495 |
+
"step": 96
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 49.0,
|
499 |
+
"eval_accuracy": 0.6571428571428571,
|
500 |
+
"eval_loss": 0.9070726037025452,
|
501 |
+
"eval_runtime": 0.8188,
|
502 |
+
"eval_samples_per_second": 85.488,
|
503 |
+
"eval_steps_per_second": 2.443,
|
504 |
+
"step": 98
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 50.0,
|
508 |
+
"learning_rate": 9.375e-05,
|
509 |
+
"loss": 0.9721,
|
510 |
+
"step": 100
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"epoch": 50.0,
|
514 |
+
"eval_accuracy": 0.6571428571428571,
|
515 |
+
"eval_loss": 0.9055730700492859,
|
516 |
+
"eval_runtime": 0.6361,
|
517 |
+
"eval_samples_per_second": 110.054,
|
518 |
+
"eval_steps_per_second": 3.144,
|
519 |
+
"step": 100
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 51.0,
|
523 |
+
"eval_accuracy": 0.6571428571428571,
|
524 |
+
"eval_loss": 0.9046576619148254,
|
525 |
+
"eval_runtime": 0.6407,
|
526 |
+
"eval_samples_per_second": 109.252,
|
527 |
+
"eval_steps_per_second": 3.121,
|
528 |
+
"step": 102
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 52.0,
|
532 |
+
"eval_accuracy": 0.6571428571428571,
|
533 |
+
"eval_loss": 0.9038794636726379,
|
534 |
+
"eval_runtime": 0.8178,
|
535 |
+
"eval_samples_per_second": 85.592,
|
536 |
+
"eval_steps_per_second": 2.445,
|
537 |
+
"step": 104
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 53.0,
|
541 |
+
"eval_accuracy": 0.6714285714285714,
|
542 |
+
"eval_loss": 0.9030665755271912,
|
543 |
+
"eval_runtime": 0.6283,
|
544 |
+
"eval_samples_per_second": 111.419,
|
545 |
+
"eval_steps_per_second": 3.183,
|
546 |
+
"step": 106
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"epoch": 54.0,
|
550 |
+
"eval_accuracy": 0.6714285714285714,
|
551 |
+
"eval_loss": 0.902490496635437,
|
552 |
+
"eval_runtime": 0.8366,
|
553 |
+
"eval_samples_per_second": 83.669,
|
554 |
+
"eval_steps_per_second": 2.391,
|
555 |
+
"step": 108
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 55.0,
|
559 |
+
"learning_rate": 9.062500000000001e-05,
|
560 |
+
"loss": 0.9698,
|
561 |
+
"step": 110
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 55.0,
|
565 |
+
"eval_accuracy": 0.6714285714285714,
|
566 |
+
"eval_loss": 0.902264416217804,
|
567 |
+
"eval_runtime": 0.9891,
|
568 |
+
"eval_samples_per_second": 70.774,
|
569 |
+
"eval_steps_per_second": 2.022,
|
570 |
+
"step": 110
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 56.0,
|
574 |
+
"eval_accuracy": 0.6714285714285714,
|
575 |
+
"eval_loss": 0.9011555314064026,
|
576 |
+
"eval_runtime": 0.6498,
|
577 |
+
"eval_samples_per_second": 107.729,
|
578 |
+
"eval_steps_per_second": 3.078,
|
579 |
+
"step": 112
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 57.0,
|
583 |
+
"eval_accuracy": 0.6714285714285714,
|
584 |
+
"eval_loss": 0.8996686935424805,
|
585 |
+
"eval_runtime": 0.8289,
|
586 |
+
"eval_samples_per_second": 84.447,
|
587 |
+
"eval_steps_per_second": 2.413,
|
588 |
+
"step": 114
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"epoch": 58.0,
|
592 |
+
"eval_accuracy": 0.6714285714285714,
|
593 |
+
"eval_loss": 0.8982025980949402,
|
594 |
+
"eval_runtime": 0.6375,
|
595 |
+
"eval_samples_per_second": 109.798,
|
596 |
+
"eval_steps_per_second": 3.137,
|
597 |
+
"step": 116
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 59.0,
|
601 |
+
"eval_accuracy": 0.6714285714285714,
|
602 |
+
"eval_loss": 0.8969982266426086,
|
603 |
+
"eval_runtime": 0.6483,
|
604 |
+
"eval_samples_per_second": 107.97,
|
605 |
+
"eval_steps_per_second": 3.085,
|
606 |
+
"step": 118
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 60.0,
|
610 |
+
"learning_rate": 8.75e-05,
|
611 |
+
"loss": 0.9341,
|
612 |
+
"step": 120
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 60.0,
|
616 |
+
"eval_accuracy": 0.6857142857142857,
|
617 |
+
"eval_loss": 0.8956836462020874,
|
618 |
+
"eval_runtime": 0.8303,
|
619 |
+
"eval_samples_per_second": 84.307,
|
620 |
+
"eval_steps_per_second": 2.409,
|
621 |
+
"step": 120
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 61.0,
|
625 |
+
"eval_accuracy": 0.7,
|
626 |
+
"eval_loss": 0.8946982622146606,
|
627 |
+
"eval_runtime": 0.6483,
|
628 |
+
"eval_samples_per_second": 107.981,
|
629 |
+
"eval_steps_per_second": 3.085,
|
630 |
+
"step": 122
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"epoch": 62.0,
|
634 |
+
"eval_accuracy": 0.7,
|
635 |
+
"eval_loss": 0.8940390348434448,
|
636 |
+
"eval_runtime": 0.6421,
|
637 |
+
"eval_samples_per_second": 109.023,
|
638 |
+
"eval_steps_per_second": 3.115,
|
639 |
+
"step": 124
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 63.0,
|
643 |
+
"eval_accuracy": 0.6714285714285714,
|
644 |
+
"eval_loss": 0.8940520286560059,
|
645 |
+
"eval_runtime": 0.8356,
|
646 |
+
"eval_samples_per_second": 83.773,
|
647 |
+
"eval_steps_per_second": 2.394,
|
648 |
+
"step": 126
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 64.0,
|
652 |
+
"eval_accuracy": 0.6714285714285714,
|
653 |
+
"eval_loss": 0.8934383988380432,
|
654 |
+
"eval_runtime": 0.6317,
|
655 |
+
"eval_samples_per_second": 110.812,
|
656 |
+
"eval_steps_per_second": 3.166,
|
657 |
+
"step": 128
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 65.0,
|
661 |
+
"learning_rate": 8.4375e-05,
|
662 |
+
"loss": 0.9717,
|
663 |
+
"step": 130
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 65.0,
|
667 |
+
"eval_accuracy": 0.6714285714285714,
|
668 |
+
"eval_loss": 0.8916982412338257,
|
669 |
+
"eval_runtime": 0.6456,
|
670 |
+
"eval_samples_per_second": 108.418,
|
671 |
+
"eval_steps_per_second": 3.098,
|
672 |
+
"step": 130
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"epoch": 66.0,
|
676 |
+
"eval_accuracy": 0.6857142857142857,
|
677 |
+
"eval_loss": 0.8898113369941711,
|
678 |
+
"eval_runtime": 0.8145,
|
679 |
+
"eval_samples_per_second": 85.937,
|
680 |
+
"eval_steps_per_second": 2.455,
|
681 |
+
"step": 132
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 67.0,
|
685 |
+
"eval_accuracy": 0.6857142857142857,
|
686 |
+
"eval_loss": 0.8883917927742004,
|
687 |
+
"eval_runtime": 0.6387,
|
688 |
+
"eval_samples_per_second": 109.599,
|
689 |
+
"eval_steps_per_second": 3.131,
|
690 |
+
"step": 134
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"epoch": 68.0,
|
694 |
+
"eval_accuracy": 0.6857142857142857,
|
695 |
+
"eval_loss": 0.8869962692260742,
|
696 |
+
"eval_runtime": 0.6406,
|
697 |
+
"eval_samples_per_second": 109.266,
|
698 |
+
"eval_steps_per_second": 3.122,
|
699 |
+
"step": 136
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 69.0,
|
703 |
+
"eval_accuracy": 0.6857142857142857,
|
704 |
+
"eval_loss": 0.8853691816329956,
|
705 |
+
"eval_runtime": 0.8216,
|
706 |
+
"eval_samples_per_second": 85.2,
|
707 |
+
"eval_steps_per_second": 2.434,
|
708 |
+
"step": 138
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"epoch": 70.0,
|
712 |
+
"learning_rate": 8.125000000000001e-05,
|
713 |
+
"loss": 0.9655,
|
714 |
+
"step": 140
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 70.0,
|
718 |
+
"eval_accuracy": 0.6857142857142857,
|
719 |
+
"eval_loss": 0.8840075731277466,
|
720 |
+
"eval_runtime": 0.6378,
|
721 |
+
"eval_samples_per_second": 109.751,
|
722 |
+
"eval_steps_per_second": 3.136,
|
723 |
+
"step": 140
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 71.0,
|
727 |
+
"eval_accuracy": 0.6857142857142857,
|
728 |
+
"eval_loss": 0.8826519250869751,
|
729 |
+
"eval_runtime": 0.6384,
|
730 |
+
"eval_samples_per_second": 109.644,
|
731 |
+
"eval_steps_per_second": 3.133,
|
732 |
+
"step": 142
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 72.0,
|
736 |
+
"eval_accuracy": 0.6857142857142857,
|
737 |
+
"eval_loss": 0.8813565373420715,
|
738 |
+
"eval_runtime": 0.8402,
|
739 |
+
"eval_samples_per_second": 83.313,
|
740 |
+
"eval_steps_per_second": 2.38,
|
741 |
+
"step": 144
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 73.0,
|
745 |
+
"eval_accuracy": 0.6857142857142857,
|
746 |
+
"eval_loss": 0.8805155754089355,
|
747 |
+
"eval_runtime": 0.6428,
|
748 |
+
"eval_samples_per_second": 108.905,
|
749 |
+
"eval_steps_per_second": 3.112,
|
750 |
+
"step": 146
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"epoch": 74.0,
|
754 |
+
"eval_accuracy": 0.6857142857142857,
|
755 |
+
"eval_loss": 0.8803040385246277,
|
756 |
+
"eval_runtime": 0.649,
|
757 |
+
"eval_samples_per_second": 107.857,
|
758 |
+
"eval_steps_per_second": 3.082,
|
759 |
+
"step": 148
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 75.0,
|
763 |
+
"learning_rate": 7.8125e-05,
|
764 |
+
"loss": 0.9458,
|
765 |
+
"step": 150
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 75.0,
|
769 |
+
"eval_accuracy": 0.6857142857142857,
|
770 |
+
"eval_loss": 0.8801725506782532,
|
771 |
+
"eval_runtime": 0.82,
|
772 |
+
"eval_samples_per_second": 85.365,
|
773 |
+
"eval_steps_per_second": 2.439,
|
774 |
+
"step": 150
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 76.0,
|
778 |
+
"eval_accuracy": 0.6714285714285714,
|
779 |
+
"eval_loss": 0.8797475695610046,
|
780 |
+
"eval_runtime": 0.6476,
|
781 |
+
"eval_samples_per_second": 108.085,
|
782 |
+
"eval_steps_per_second": 3.088,
|
783 |
+
"step": 152
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 77.0,
|
787 |
+
"eval_accuracy": 0.6714285714285714,
|
788 |
+
"eval_loss": 0.8793725967407227,
|
789 |
+
"eval_runtime": 0.6468,
|
790 |
+
"eval_samples_per_second": 108.22,
|
791 |
+
"eval_steps_per_second": 3.092,
|
792 |
+
"step": 154
|
793 |
+
},
|
794 |
+
{
|
795 |
+
"epoch": 78.0,
|
796 |
+
"eval_accuracy": 0.6714285714285714,
|
797 |
+
"eval_loss": 0.8795827031135559,
|
798 |
+
"eval_runtime": 0.8346,
|
799 |
+
"eval_samples_per_second": 83.873,
|
800 |
+
"eval_steps_per_second": 2.396,
|
801 |
+
"step": 156
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 79.0,
|
805 |
+
"eval_accuracy": 0.6714285714285714,
|
806 |
+
"eval_loss": 0.8807878494262695,
|
807 |
+
"eval_runtime": 0.6453,
|
808 |
+
"eval_samples_per_second": 108.479,
|
809 |
+
"eval_steps_per_second": 3.099,
|
810 |
+
"step": 158
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"epoch": 80.0,
|
814 |
+
"learning_rate": 7.500000000000001e-05,
|
815 |
+
"loss": 0.9094,
|
816 |
+
"step": 160
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 80.0,
|
820 |
+
"eval_accuracy": 0.6714285714285714,
|
821 |
+
"eval_loss": 0.8817013502120972,
|
822 |
+
"eval_runtime": 0.6393,
|
823 |
+
"eval_samples_per_second": 109.492,
|
824 |
+
"eval_steps_per_second": 3.128,
|
825 |
+
"step": 160
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 81.0,
|
829 |
+
"eval_accuracy": 0.6714285714285714,
|
830 |
+
"eval_loss": 0.8828238844871521,
|
831 |
+
"eval_runtime": 0.8346,
|
832 |
+
"eval_samples_per_second": 83.868,
|
833 |
+
"eval_steps_per_second": 2.396,
|
834 |
+
"step": 162
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 82.0,
|
838 |
+
"eval_accuracy": 0.6714285714285714,
|
839 |
+
"eval_loss": 0.8835611939430237,
|
840 |
+
"eval_runtime": 0.636,
|
841 |
+
"eval_samples_per_second": 110.07,
|
842 |
+
"eval_steps_per_second": 3.145,
|
843 |
+
"step": 164
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 83.0,
|
847 |
+
"eval_accuracy": 0.6714285714285714,
|
848 |
+
"eval_loss": 0.8830356001853943,
|
849 |
+
"eval_runtime": 0.6535,
|
850 |
+
"eval_samples_per_second": 107.117,
|
851 |
+
"eval_steps_per_second": 3.06,
|
852 |
+
"step": 166
|
853 |
+
},
|
854 |
+
{
|
855 |
+
"epoch": 84.0,
|
856 |
+
"eval_accuracy": 0.6571428571428571,
|
857 |
+
"eval_loss": 0.8820751905441284,
|
858 |
+
"eval_runtime": 0.8384,
|
859 |
+
"eval_samples_per_second": 83.495,
|
860 |
+
"eval_steps_per_second": 2.386,
|
861 |
+
"step": 168
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 85.0,
|
865 |
+
"learning_rate": 7.1875e-05,
|
866 |
+
"loss": 0.8719,
|
867 |
+
"step": 170
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 85.0,
|
871 |
+
"eval_accuracy": 0.6571428571428571,
|
872 |
+
"eval_loss": 0.8812506794929504,
|
873 |
+
"eval_runtime": 0.6519,
|
874 |
+
"eval_samples_per_second": 107.372,
|
875 |
+
"eval_steps_per_second": 3.068,
|
876 |
+
"step": 170
|
877 |
+
},
|
878 |
+
{
|
879 |
+
"epoch": 86.0,
|
880 |
+
"eval_accuracy": 0.6714285714285714,
|
881 |
+
"eval_loss": 0.8804309368133545,
|
882 |
+
"eval_runtime": 0.6326,
|
883 |
+
"eval_samples_per_second": 110.652,
|
884 |
+
"eval_steps_per_second": 3.161,
|
885 |
+
"step": 172
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 87.0,
|
889 |
+
"eval_accuracy": 0.6571428571428571,
|
890 |
+
"eval_loss": 0.8798118829727173,
|
891 |
+
"eval_runtime": 0.8338,
|
892 |
+
"eval_samples_per_second": 83.95,
|
893 |
+
"eval_steps_per_second": 2.399,
|
894 |
+
"step": 174
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 88.0,
|
898 |
+
"eval_accuracy": 0.6571428571428571,
|
899 |
+
"eval_loss": 0.8787184953689575,
|
900 |
+
"eval_runtime": 0.64,
|
901 |
+
"eval_samples_per_second": 109.38,
|
902 |
+
"eval_steps_per_second": 3.125,
|
903 |
+
"step": 176
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 89.0,
|
907 |
+
"eval_accuracy": 0.6571428571428571,
|
908 |
+
"eval_loss": 0.8769770264625549,
|
909 |
+
"eval_runtime": 0.6382,
|
910 |
+
"eval_samples_per_second": 109.679,
|
911 |
+
"eval_steps_per_second": 3.134,
|
912 |
+
"step": 178
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 90.0,
|
916 |
+
"learning_rate": 6.875e-05,
|
917 |
+
"loss": 0.9288,
|
918 |
+
"step": 180
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"epoch": 90.0,
|
922 |
+
"eval_accuracy": 0.6857142857142857,
|
923 |
+
"eval_loss": 0.8752025961875916,
|
924 |
+
"eval_runtime": 0.8649,
|
925 |
+
"eval_samples_per_second": 80.934,
|
926 |
+
"eval_steps_per_second": 2.312,
|
927 |
+
"step": 180
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 91.0,
|
931 |
+
"eval_accuracy": 0.6857142857142857,
|
932 |
+
"eval_loss": 0.8721939921379089,
|
933 |
+
"eval_runtime": 0.6536,
|
934 |
+
"eval_samples_per_second": 107.101,
|
935 |
+
"eval_steps_per_second": 3.06,
|
936 |
+
"step": 182
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"epoch": 92.0,
|
940 |
+
"eval_accuracy": 0.6714285714285714,
|
941 |
+
"eval_loss": 0.8693682551383972,
|
942 |
+
"eval_runtime": 0.6434,
|
943 |
+
"eval_samples_per_second": 108.799,
|
944 |
+
"eval_steps_per_second": 3.109,
|
945 |
+
"step": 184
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 93.0,
|
949 |
+
"eval_accuracy": 0.6714285714285714,
|
950 |
+
"eval_loss": 0.8670406937599182,
|
951 |
+
"eval_runtime": 0.8337,
|
952 |
+
"eval_samples_per_second": 83.963,
|
953 |
+
"eval_steps_per_second": 2.399,
|
954 |
+
"step": 186
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 94.0,
|
958 |
+
"eval_accuracy": 0.6857142857142857,
|
959 |
+
"eval_loss": 0.8644655346870422,
|
960 |
+
"eval_runtime": 0.6432,
|
961 |
+
"eval_samples_per_second": 108.826,
|
962 |
+
"eval_steps_per_second": 3.109,
|
963 |
+
"step": 188
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 95.0,
|
967 |
+
"learning_rate": 6.562500000000001e-05,
|
968 |
+
"loss": 0.9039,
|
969 |
+
"step": 190
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 95.0,
|
973 |
+
"eval_accuracy": 0.6857142857142857,
|
974 |
+
"eval_loss": 0.8624207973480225,
|
975 |
+
"eval_runtime": 0.6482,
|
976 |
+
"eval_samples_per_second": 107.999,
|
977 |
+
"eval_steps_per_second": 3.086,
|
978 |
+
"step": 190
|
979 |
+
},
|
980 |
+
{
|
981 |
+
"epoch": 96.0,
|
982 |
+
"eval_accuracy": 0.6714285714285714,
|
983 |
+
"eval_loss": 0.8603058457374573,
|
984 |
+
"eval_runtime": 0.8409,
|
985 |
+
"eval_samples_per_second": 83.249,
|
986 |
+
"eval_steps_per_second": 2.379,
|
987 |
+
"step": 192
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 97.0,
|
991 |
+
"eval_accuracy": 0.6857142857142857,
|
992 |
+
"eval_loss": 0.8583868741989136,
|
993 |
+
"eval_runtime": 0.6484,
|
994 |
+
"eval_samples_per_second": 107.951,
|
995 |
+
"eval_steps_per_second": 3.084,
|
996 |
+
"step": 194
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 98.0,
|
1000 |
+
"eval_accuracy": 0.6857142857142857,
|
1001 |
+
"eval_loss": 0.8566268086433411,
|
1002 |
+
"eval_runtime": 0.6949,
|
1003 |
+
"eval_samples_per_second": 100.728,
|
1004 |
+
"eval_steps_per_second": 2.878,
|
1005 |
+
"step": 196
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 99.0,
|
1009 |
+
"eval_accuracy": 0.6857142857142857,
|
1010 |
+
"eval_loss": 0.8553413152694702,
|
1011 |
+
"eval_runtime": 0.8276,
|
1012 |
+
"eval_samples_per_second": 84.585,
|
1013 |
+
"eval_steps_per_second": 2.417,
|
1014 |
+
"step": 198
|
1015 |
+
},
|
1016 |
+
{
|
1017 |
+
"epoch": 100.0,
|
1018 |
+
"learning_rate": 6.25e-05,
|
1019 |
+
"loss": 0.9081,
|
1020 |
+
"step": 200
|
1021 |
+
},
|
1022 |
+
{
|
1023 |
+
"epoch": 100.0,
|
1024 |
+
"eval_accuracy": 0.6857142857142857,
|
1025 |
+
"eval_loss": 0.8549684286117554,
|
1026 |
+
"eval_runtime": 0.6594,
|
1027 |
+
"eval_samples_per_second": 106.164,
|
1028 |
+
"eval_steps_per_second": 3.033,
|
1029 |
+
"step": 200
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 101.0,
|
1033 |
+
"eval_accuracy": 0.6857142857142857,
|
1034 |
+
"eval_loss": 0.8551309108734131,
|
1035 |
+
"eval_runtime": 0.6588,
|
1036 |
+
"eval_samples_per_second": 106.255,
|
1037 |
+
"eval_steps_per_second": 3.036,
|
1038 |
+
"step": 202
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 102.0,
|
1042 |
+
"eval_accuracy": 0.6857142857142857,
|
1043 |
+
"eval_loss": 0.8556391000747681,
|
1044 |
+
"eval_runtime": 0.8474,
|
1045 |
+
"eval_samples_per_second": 82.605,
|
1046 |
+
"eval_steps_per_second": 2.36,
|
1047 |
+
"step": 204
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 103.0,
|
1051 |
+
"eval_accuracy": 0.6857142857142857,
|
1052 |
+
"eval_loss": 0.8558002710342407,
|
1053 |
+
"eval_runtime": 0.6568,
|
1054 |
+
"eval_samples_per_second": 106.577,
|
1055 |
+
"eval_steps_per_second": 3.045,
|
1056 |
+
"step": 206
|
1057 |
+
},
|
1058 |
+
{
|
1059 |
+
"epoch": 104.0,
|
1060 |
+
"eval_accuracy": 0.6857142857142857,
|
1061 |
+
"eval_loss": 0.8554455637931824,
|
1062 |
+
"eval_runtime": 0.6448,
|
1063 |
+
"eval_samples_per_second": 108.569,
|
1064 |
+
"eval_steps_per_second": 3.102,
|
1065 |
+
"step": 208
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 105.0,
|
1069 |
+
"learning_rate": 5.9375e-05,
|
1070 |
+
"loss": 0.9142,
|
1071 |
+
"step": 210
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 105.0,
|
1075 |
+
"eval_accuracy": 0.6857142857142857,
|
1076 |
+
"eval_loss": 0.8551297783851624,
|
1077 |
+
"eval_runtime": 0.8226,
|
1078 |
+
"eval_samples_per_second": 85.093,
|
1079 |
+
"eval_steps_per_second": 2.431,
|
1080 |
+
"step": 210
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 106.0,
|
1084 |
+
"eval_accuracy": 0.6857142857142857,
|
1085 |
+
"eval_loss": 0.8553109169006348,
|
1086 |
+
"eval_runtime": 0.6501,
|
1087 |
+
"eval_samples_per_second": 107.668,
|
1088 |
+
"eval_steps_per_second": 3.076,
|
1089 |
+
"step": 212
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 107.0,
|
1093 |
+
"eval_accuracy": 0.6857142857142857,
|
1094 |
+
"eval_loss": 0.855134904384613,
|
1095 |
+
"eval_runtime": 0.637,
|
1096 |
+
"eval_samples_per_second": 109.882,
|
1097 |
+
"eval_steps_per_second": 3.139,
|
1098 |
+
"step": 214
|
1099 |
+
},
|
1100 |
+
{
|
1101 |
+
"epoch": 108.0,
|
1102 |
+
"eval_accuracy": 0.6857142857142857,
|
1103 |
+
"eval_loss": 0.8549013137817383,
|
1104 |
+
"eval_runtime": 0.8378,
|
1105 |
+
"eval_samples_per_second": 83.557,
|
1106 |
+
"eval_steps_per_second": 2.387,
|
1107 |
+
"step": 216
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 109.0,
|
1111 |
+
"eval_accuracy": 0.6857142857142857,
|
1112 |
+
"eval_loss": 0.854942798614502,
|
1113 |
+
"eval_runtime": 0.6596,
|
1114 |
+
"eval_samples_per_second": 106.131,
|
1115 |
+
"eval_steps_per_second": 3.032,
|
1116 |
+
"step": 218
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 110.0,
|
1120 |
+
"learning_rate": 5.6250000000000005e-05,
|
1121 |
+
"loss": 0.9347,
|
1122 |
+
"step": 220
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 110.0,
|
1126 |
+
"eval_accuracy": 0.6714285714285714,
|
1127 |
+
"eval_loss": 0.8551362752914429,
|
1128 |
+
"eval_runtime": 0.6674,
|
1129 |
+
"eval_samples_per_second": 104.886,
|
1130 |
+
"eval_steps_per_second": 2.997,
|
1131 |
+
"step": 220
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 111.0,
|
1135 |
+
"eval_accuracy": 0.6714285714285714,
|
1136 |
+
"eval_loss": 0.8553721308708191,
|
1137 |
+
"eval_runtime": 0.8336,
|
1138 |
+
"eval_samples_per_second": 83.974,
|
1139 |
+
"eval_steps_per_second": 2.399,
|
1140 |
+
"step": 222
|
1141 |
+
},
|
1142 |
+
{
|
1143 |
+
"epoch": 112.0,
|
1144 |
+
"eval_accuracy": 0.6714285714285714,
|
1145 |
+
"eval_loss": 0.8548364639282227,
|
1146 |
+
"eval_runtime": 0.6506,
|
1147 |
+
"eval_samples_per_second": 107.599,
|
1148 |
+
"eval_steps_per_second": 3.074,
|
1149 |
+
"step": 224
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 113.0,
|
1153 |
+
"eval_accuracy": 0.6714285714285714,
|
1154 |
+
"eval_loss": 0.853795051574707,
|
1155 |
+
"eval_runtime": 0.6756,
|
1156 |
+
"eval_samples_per_second": 103.611,
|
1157 |
+
"eval_steps_per_second": 2.96,
|
1158 |
+
"step": 226
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"epoch": 114.0,
|
1162 |
+
"eval_accuracy": 0.6714285714285714,
|
1163 |
+
"eval_loss": 0.8524832129478455,
|
1164 |
+
"eval_runtime": 0.8168,
|
1165 |
+
"eval_samples_per_second": 85.696,
|
1166 |
+
"eval_steps_per_second": 2.448,
|
1167 |
+
"step": 228
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 115.0,
|
1171 |
+
"learning_rate": 5.3125000000000004e-05,
|
1172 |
+
"loss": 0.8922,
|
1173 |
+
"step": 230
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 115.0,
|
1177 |
+
"eval_accuracy": 0.6857142857142857,
|
1178 |
+
"eval_loss": 0.8512247204780579,
|
1179 |
+
"eval_runtime": 0.6476,
|
1180 |
+
"eval_samples_per_second": 108.096,
|
1181 |
+
"eval_steps_per_second": 3.088,
|
1182 |
+
"step": 230
|
1183 |
+
},
|
1184 |
+
{
|
1185 |
+
"epoch": 116.0,
|
1186 |
+
"eval_accuracy": 0.6857142857142857,
|
1187 |
+
"eval_loss": 0.8505221009254456,
|
1188 |
+
"eval_runtime": 0.6563,
|
1189 |
+
"eval_samples_per_second": 106.655,
|
1190 |
+
"eval_steps_per_second": 3.047,
|
1191 |
+
"step": 232
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 117.0,
|
1195 |
+
"eval_accuracy": 0.6857142857142857,
|
1196 |
+
"eval_loss": 0.849509596824646,
|
1197 |
+
"eval_runtime": 0.8193,
|
1198 |
+
"eval_samples_per_second": 85.434,
|
1199 |
+
"eval_steps_per_second": 2.441,
|
1200 |
+
"step": 234
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 118.0,
|
1204 |
+
"eval_accuracy": 0.6857142857142857,
|
1205 |
+
"eval_loss": 0.8483795523643494,
|
1206 |
+
"eval_runtime": 0.6476,
|
1207 |
+
"eval_samples_per_second": 108.094,
|
1208 |
+
"eval_steps_per_second": 3.088,
|
1209 |
+
"step": 236
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 119.0,
|
1213 |
+
"eval_accuracy": 0.6857142857142857,
|
1214 |
+
"eval_loss": 0.8471851944923401,
|
1215 |
+
"eval_runtime": 0.6472,
|
1216 |
+
"eval_samples_per_second": 108.158,
|
1217 |
+
"eval_steps_per_second": 3.09,
|
1218 |
+
"step": 238
|
1219 |
+
},
|
1220 |
+
{
|
1221 |
+
"epoch": 120.0,
|
1222 |
+
"learning_rate": 5e-05,
|
1223 |
+
"loss": 0.8897,
|
1224 |
+
"step": 240
|
1225 |
+
},
|
1226 |
+
{
|
1227 |
+
"epoch": 120.0,
|
1228 |
+
"eval_accuracy": 0.6857142857142857,
|
1229 |
+
"eval_loss": 0.8455559611320496,
|
1230 |
+
"eval_runtime": 0.8155,
|
1231 |
+
"eval_samples_per_second": 85.837,
|
1232 |
+
"eval_steps_per_second": 2.452,
|
1233 |
+
"step": 240
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 121.0,
|
1237 |
+
"eval_accuracy": 0.6857142857142857,
|
1238 |
+
"eval_loss": 0.8439861536026001,
|
1239 |
+
"eval_runtime": 0.6794,
|
1240 |
+
"eval_samples_per_second": 103.026,
|
1241 |
+
"eval_steps_per_second": 2.944,
|
1242 |
+
"step": 242
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 122.0,
|
1246 |
+
"eval_accuracy": 0.6714285714285714,
|
1247 |
+
"eval_loss": 0.8426181674003601,
|
1248 |
+
"eval_runtime": 0.6386,
|
1249 |
+
"eval_samples_per_second": 109.616,
|
1250 |
+
"eval_steps_per_second": 3.132,
|
1251 |
+
"step": 244
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 123.0,
|
1255 |
+
"eval_accuracy": 0.6857142857142857,
|
1256 |
+
"eval_loss": 0.8412323594093323,
|
1257 |
+
"eval_runtime": 0.8222,
|
1258 |
+
"eval_samples_per_second": 85.135,
|
1259 |
+
"eval_steps_per_second": 2.432,
|
1260 |
+
"step": 246
|
1261 |
+
},
|
1262 |
+
{
|
1263 |
+
"epoch": 124.0,
|
1264 |
+
"eval_accuracy": 0.6857142857142857,
|
1265 |
+
"eval_loss": 0.8395997881889343,
|
1266 |
+
"eval_runtime": 0.6405,
|
1267 |
+
"eval_samples_per_second": 109.29,
|
1268 |
+
"eval_steps_per_second": 3.123,
|
1269 |
+
"step": 248
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 125.0,
|
1273 |
+
"learning_rate": 4.6875e-05,
|
1274 |
+
"loss": 0.8829,
|
1275 |
+
"step": 250
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"epoch": 125.0,
|
1279 |
+
"eval_accuracy": 0.6857142857142857,
|
1280 |
+
"eval_loss": 0.8383906483650208,
|
1281 |
+
"eval_runtime": 0.6384,
|
1282 |
+
"eval_samples_per_second": 109.656,
|
1283 |
+
"eval_steps_per_second": 3.133,
|
1284 |
+
"step": 250
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 126.0,
|
1288 |
+
"eval_accuracy": 0.6857142857142857,
|
1289 |
+
"eval_loss": 0.8372732996940613,
|
1290 |
+
"eval_runtime": 0.8007,
|
1291 |
+
"eval_samples_per_second": 87.425,
|
1292 |
+
"eval_steps_per_second": 2.498,
|
1293 |
+
"step": 252
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 127.0,
|
1297 |
+
"eval_accuracy": 0.6857142857142857,
|
1298 |
+
"eval_loss": 0.8365365266799927,
|
1299 |
+
"eval_runtime": 0.6412,
|
1300 |
+
"eval_samples_per_second": 109.171,
|
1301 |
+
"eval_steps_per_second": 3.119,
|
1302 |
+
"step": 254
|
1303 |
+
},
|
1304 |
+
{
|
1305 |
+
"epoch": 128.0,
|
1306 |
+
"eval_accuracy": 0.6857142857142857,
|
1307 |
+
"eval_loss": 0.835951030254364,
|
1308 |
+
"eval_runtime": 0.6518,
|
1309 |
+
"eval_samples_per_second": 107.389,
|
1310 |
+
"eval_steps_per_second": 3.068,
|
1311 |
+
"step": 256
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 129.0,
|
1315 |
+
"eval_accuracy": 0.6857142857142857,
|
1316 |
+
"eval_loss": 0.8352962732315063,
|
1317 |
+
"eval_runtime": 0.8209,
|
1318 |
+
"eval_samples_per_second": 85.273,
|
1319 |
+
"eval_steps_per_second": 2.436,
|
1320 |
+
"step": 258
|
1321 |
+
},
|
1322 |
+
{
|
1323 |
+
"epoch": 130.0,
|
1324 |
+
"learning_rate": 4.375e-05,
|
1325 |
+
"loss": 0.8744,
|
1326 |
+
"step": 260
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"epoch": 130.0,
|
1330 |
+
"eval_accuracy": 0.6857142857142857,
|
1331 |
+
"eval_loss": 0.8344349265098572,
|
1332 |
+
"eval_runtime": 0.6608,
|
1333 |
+
"eval_samples_per_second": 105.932,
|
1334 |
+
"eval_steps_per_second": 3.027,
|
1335 |
+
"step": 260
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 131.0,
|
1339 |
+
"eval_accuracy": 0.6714285714285714,
|
1340 |
+
"eval_loss": 0.8336659669876099,
|
1341 |
+
"eval_runtime": 0.6503,
|
1342 |
+
"eval_samples_per_second": 107.635,
|
1343 |
+
"eval_steps_per_second": 3.075,
|
1344 |
+
"step": 262
|
1345 |
+
},
|
1346 |
+
{
|
1347 |
+
"epoch": 132.0,
|
1348 |
+
"eval_accuracy": 0.6857142857142857,
|
1349 |
+
"eval_loss": 0.8329463601112366,
|
1350 |
+
"eval_runtime": 0.824,
|
1351 |
+
"eval_samples_per_second": 84.952,
|
1352 |
+
"eval_steps_per_second": 2.427,
|
1353 |
+
"step": 264
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 133.0,
|
1357 |
+
"eval_accuracy": 0.6857142857142857,
|
1358 |
+
"eval_loss": 0.8324605822563171,
|
1359 |
+
"eval_runtime": 0.6594,
|
1360 |
+
"eval_samples_per_second": 106.156,
|
1361 |
+
"eval_steps_per_second": 3.033,
|
1362 |
+
"step": 266
|
1363 |
+
},
|
1364 |
+
{
|
1365 |
+
"epoch": 134.0,
|
1366 |
+
"eval_accuracy": 0.6857142857142857,
|
1367 |
+
"eval_loss": 0.8318061232566833,
|
1368 |
+
"eval_runtime": 0.6395,
|
1369 |
+
"eval_samples_per_second": 109.457,
|
1370 |
+
"eval_steps_per_second": 3.127,
|
1371 |
+
"step": 268
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 135.0,
|
1375 |
+
"learning_rate": 4.0625000000000005e-05,
|
1376 |
+
"loss": 0.8657,
|
1377 |
+
"step": 270
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 135.0,
|
1381 |
+
"eval_accuracy": 0.6857142857142857,
|
1382 |
+
"eval_loss": 0.8312056660652161,
|
1383 |
+
"eval_runtime": 0.8064,
|
1384 |
+
"eval_samples_per_second": 86.802,
|
1385 |
+
"eval_steps_per_second": 2.48,
|
1386 |
+
"step": 270
|
1387 |
+
},
|
1388 |
+
{
|
1389 |
+
"epoch": 136.0,
|
1390 |
+
"eval_accuracy": 0.6714285714285714,
|
1391 |
+
"eval_loss": 0.8306312561035156,
|
1392 |
+
"eval_runtime": 0.645,
|
1393 |
+
"eval_samples_per_second": 108.533,
|
1394 |
+
"eval_steps_per_second": 3.101,
|
1395 |
+
"step": 272
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 137.0,
|
1399 |
+
"eval_accuracy": 0.6714285714285714,
|
1400 |
+
"eval_loss": 0.8299986720085144,
|
1401 |
+
"eval_runtime": 0.6678,
|
1402 |
+
"eval_samples_per_second": 104.823,
|
1403 |
+
"eval_steps_per_second": 2.995,
|
1404 |
+
"step": 274
|
1405 |
+
},
|
1406 |
+
{
|
1407 |
+
"epoch": 138.0,
|
1408 |
+
"eval_accuracy": 0.6714285714285714,
|
1409 |
+
"eval_loss": 0.8296393752098083,
|
1410 |
+
"eval_runtime": 0.8159,
|
1411 |
+
"eval_samples_per_second": 85.792,
|
1412 |
+
"eval_steps_per_second": 2.451,
|
1413 |
+
"step": 276
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 139.0,
|
1417 |
+
"eval_accuracy": 0.6714285714285714,
|
1418 |
+
"eval_loss": 0.8294458389282227,
|
1419 |
+
"eval_runtime": 0.6396,
|
1420 |
+
"eval_samples_per_second": 109.442,
|
1421 |
+
"eval_steps_per_second": 3.127,
|
1422 |
+
"step": 278
|
1423 |
+
},
|
1424 |
+
{
|
1425 |
+
"epoch": 140.0,
|
1426 |
+
"learning_rate": 3.7500000000000003e-05,
|
1427 |
+
"loss": 0.9421,
|
1428 |
+
"step": 280
|
1429 |
+
},
|
1430 |
+
{
|
1431 |
+
"epoch": 140.0,
|
1432 |
+
"eval_accuracy": 0.6714285714285714,
|
1433 |
+
"eval_loss": 0.8292441368103027,
|
1434 |
+
"eval_runtime": 0.6515,
|
1435 |
+
"eval_samples_per_second": 107.445,
|
1436 |
+
"eval_steps_per_second": 3.07,
|
1437 |
+
"step": 280
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 141.0,
|
1441 |
+
"eval_accuracy": 0.6714285714285714,
|
1442 |
+
"eval_loss": 0.8291121125221252,
|
1443 |
+
"eval_runtime": 0.8194,
|
1444 |
+
"eval_samples_per_second": 85.428,
|
1445 |
+
"eval_steps_per_second": 2.441,
|
1446 |
+
"step": 282
|
1447 |
+
},
|
1448 |
+
{
|
1449 |
+
"epoch": 142.0,
|
1450 |
+
"eval_accuracy": 0.6714285714285714,
|
1451 |
+
"eval_loss": 0.8290067315101624,
|
1452 |
+
"eval_runtime": 0.9452,
|
1453 |
+
"eval_samples_per_second": 74.057,
|
1454 |
+
"eval_steps_per_second": 2.116,
|
1455 |
+
"step": 284
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 143.0,
|
1459 |
+
"eval_accuracy": 0.6857142857142857,
|
1460 |
+
"eval_loss": 0.8290221095085144,
|
1461 |
+
"eval_runtime": 0.6854,
|
1462 |
+
"eval_samples_per_second": 102.129,
|
1463 |
+
"eval_steps_per_second": 2.918,
|
1464 |
+
"step": 286
|
1465 |
+
},
|
1466 |
+
{
|
1467 |
+
"epoch": 144.0,
|
1468 |
+
"eval_accuracy": 0.6857142857142857,
|
1469 |
+
"eval_loss": 0.8288514018058777,
|
1470 |
+
"eval_runtime": 0.6741,
|
1471 |
+
"eval_samples_per_second": 103.846,
|
1472 |
+
"eval_steps_per_second": 2.967,
|
1473 |
+
"step": 288
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 145.0,
|
1477 |
+
"learning_rate": 3.4375e-05,
|
1478 |
+
"loss": 0.9066,
|
1479 |
+
"step": 290
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 145.0,
|
1483 |
+
"eval_accuracy": 0.6857142857142857,
|
1484 |
+
"eval_loss": 0.8286876082420349,
|
1485 |
+
"eval_runtime": 0.6545,
|
1486 |
+
"eval_samples_per_second": 106.944,
|
1487 |
+
"eval_steps_per_second": 3.056,
|
1488 |
+
"step": 290
|
1489 |
+
},
|
1490 |
+
{
|
1491 |
+
"epoch": 146.0,
|
1492 |
+
"eval_accuracy": 0.6857142857142857,
|
1493 |
+
"eval_loss": 0.8290360569953918,
|
1494 |
+
"eval_runtime": 0.6611,
|
1495 |
+
"eval_samples_per_second": 105.889,
|
1496 |
+
"eval_steps_per_second": 3.025,
|
1497 |
+
"step": 292
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 147.0,
|
1501 |
+
"eval_accuracy": 0.6857142857142857,
|
1502 |
+
"eval_loss": 0.8293396830558777,
|
1503 |
+
"eval_runtime": 0.6543,
|
1504 |
+
"eval_samples_per_second": 106.98,
|
1505 |
+
"eval_steps_per_second": 3.057,
|
1506 |
+
"step": 294
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"epoch": 148.0,
|
1510 |
+
"eval_accuracy": 0.6857142857142857,
|
1511 |
+
"eval_loss": 0.8294445872306824,
|
1512 |
+
"eval_runtime": 0.6455,
|
1513 |
+
"eval_samples_per_second": 108.45,
|
1514 |
+
"eval_steps_per_second": 3.099,
|
1515 |
+
"step": 296
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 149.0,
|
1519 |
+
"eval_accuracy": 0.6857142857142857,
|
1520 |
+
"eval_loss": 0.8294763565063477,
|
1521 |
+
"eval_runtime": 0.9727,
|
1522 |
+
"eval_samples_per_second": 71.966,
|
1523 |
+
"eval_steps_per_second": 2.056,
|
1524 |
+
"step": 298
|
1525 |
+
},
|
1526 |
+
{
|
1527 |
+
"epoch": 150.0,
|
1528 |
+
"learning_rate": 3.125e-05,
|
1529 |
+
"loss": 0.9068,
|
1530 |
+
"step": 300
|
1531 |
+
},
|
1532 |
+
{
|
1533 |
+
"epoch": 150.0,
|
1534 |
+
"eval_accuracy": 0.6857142857142857,
|
1535 |
+
"eval_loss": 0.8295239210128784,
|
1536 |
+
"eval_runtime": 0.9775,
|
1537 |
+
"eval_samples_per_second": 71.611,
|
1538 |
+
"eval_steps_per_second": 2.046,
|
1539 |
+
"step": 300
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 151.0,
|
1543 |
+
"eval_accuracy": 0.6857142857142857,
|
1544 |
+
"eval_loss": 0.8294230699539185,
|
1545 |
+
"eval_runtime": 0.6644,
|
1546 |
+
"eval_samples_per_second": 105.363,
|
1547 |
+
"eval_steps_per_second": 3.01,
|
1548 |
+
"step": 302
|
1549 |
+
},
|
1550 |
+
{
|
1551 |
+
"epoch": 152.0,
|
1552 |
+
"eval_accuracy": 0.6857142857142857,
|
1553 |
+
"eval_loss": 0.829305112361908,
|
1554 |
+
"eval_runtime": 0.6604,
|
1555 |
+
"eval_samples_per_second": 105.994,
|
1556 |
+
"eval_steps_per_second": 3.028,
|
1557 |
+
"step": 304
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 153.0,
|
1561 |
+
"eval_accuracy": 0.6857142857142857,
|
1562 |
+
"eval_loss": 0.8293172717094421,
|
1563 |
+
"eval_runtime": 0.8353,
|
1564 |
+
"eval_samples_per_second": 83.803,
|
1565 |
+
"eval_steps_per_second": 2.394,
|
1566 |
+
"step": 306
|
1567 |
+
},
|
1568 |
+
{
|
1569 |
+
"epoch": 154.0,
|
1570 |
+
"eval_accuracy": 0.6857142857142857,
|
1571 |
+
"eval_loss": 0.8289957046508789,
|
1572 |
+
"eval_runtime": 0.6575,
|
1573 |
+
"eval_samples_per_second": 106.469,
|
1574 |
+
"eval_steps_per_second": 3.042,
|
1575 |
+
"step": 308
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 155.0,
|
1579 |
+
"learning_rate": 2.8125000000000003e-05,
|
1580 |
+
"loss": 0.8715,
|
1581 |
+
"step": 310
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 155.0,
|
1585 |
+
"eval_accuracy": 0.6857142857142857,
|
1586 |
+
"eval_loss": 0.8286699056625366,
|
1587 |
+
"eval_runtime": 0.6466,
|
1588 |
+
"eval_samples_per_second": 108.266,
|
1589 |
+
"eval_steps_per_second": 3.093,
|
1590 |
+
"step": 310
|
1591 |
+
},
|
1592 |
+
{
|
1593 |
+
"epoch": 156.0,
|
1594 |
+
"eval_accuracy": 0.6857142857142857,
|
1595 |
+
"eval_loss": 0.8283028602600098,
|
1596 |
+
"eval_runtime": 0.8251,
|
1597 |
+
"eval_samples_per_second": 84.843,
|
1598 |
+
"eval_steps_per_second": 2.424,
|
1599 |
+
"step": 312
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 157.0,
|
1603 |
+
"eval_accuracy": 0.6857142857142857,
|
1604 |
+
"eval_loss": 0.8276944160461426,
|
1605 |
+
"eval_runtime": 0.6461,
|
1606 |
+
"eval_samples_per_second": 108.335,
|
1607 |
+
"eval_steps_per_second": 3.095,
|
1608 |
+
"step": 314
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"epoch": 158.0,
|
1612 |
+
"eval_accuracy": 0.6857142857142857,
|
1613 |
+
"eval_loss": 0.827368438243866,
|
1614 |
+
"eval_runtime": 0.6771,
|
1615 |
+
"eval_samples_per_second": 103.379,
|
1616 |
+
"eval_steps_per_second": 2.954,
|
1617 |
+
"step": 316
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 159.0,
|
1621 |
+
"eval_accuracy": 0.6857142857142857,
|
1622 |
+
"eval_loss": 0.8269255757331848,
|
1623 |
+
"eval_runtime": 0.8454,
|
1624 |
+
"eval_samples_per_second": 82.804,
|
1625 |
+
"eval_steps_per_second": 2.366,
|
1626 |
+
"step": 318
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 160.0,
|
1630 |
+
"learning_rate": 2.5e-05,
|
1631 |
+
"loss": 0.8921,
|
1632 |
+
"step": 320
|
1633 |
+
},
|
1634 |
+
{
|
1635 |
+
"epoch": 160.0,
|
1636 |
+
"eval_accuracy": 0.6857142857142857,
|
1637 |
+
"eval_loss": 0.826560914516449,
|
1638 |
+
"eval_runtime": 0.6462,
|
1639 |
+
"eval_samples_per_second": 108.325,
|
1640 |
+
"eval_steps_per_second": 3.095,
|
1641 |
+
"step": 320
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 161.0,
|
1645 |
+
"eval_accuracy": 0.6857142857142857,
|
1646 |
+
"eval_loss": 0.8263527154922485,
|
1647 |
+
"eval_runtime": 0.6718,
|
1648 |
+
"eval_samples_per_second": 104.193,
|
1649 |
+
"eval_steps_per_second": 2.977,
|
1650 |
+
"step": 322
|
1651 |
+
},
|
1652 |
+
{
|
1653 |
+
"epoch": 162.0,
|
1654 |
+
"eval_accuracy": 0.6857142857142857,
|
1655 |
+
"eval_loss": 0.826131284236908,
|
1656 |
+
"eval_runtime": 0.8359,
|
1657 |
+
"eval_samples_per_second": 83.747,
|
1658 |
+
"eval_steps_per_second": 2.393,
|
1659 |
+
"step": 324
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 163.0,
|
1663 |
+
"eval_accuracy": 0.6857142857142857,
|
1664 |
+
"eval_loss": 0.8259814977645874,
|
1665 |
+
"eval_runtime": 0.6618,
|
1666 |
+
"eval_samples_per_second": 105.778,
|
1667 |
+
"eval_steps_per_second": 3.022,
|
1668 |
+
"step": 326
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 164.0,
|
1672 |
+
"eval_accuracy": 0.6857142857142857,
|
1673 |
+
"eval_loss": 0.8257696032524109,
|
1674 |
+
"eval_runtime": 0.6625,
|
1675 |
+
"eval_samples_per_second": 105.664,
|
1676 |
+
"eval_steps_per_second": 3.019,
|
1677 |
+
"step": 328
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 165.0,
|
1681 |
+
"learning_rate": 2.1875e-05,
|
1682 |
+
"loss": 0.8768,
|
1683 |
+
"step": 330
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 165.0,
|
1687 |
+
"eval_accuracy": 0.6857142857142857,
|
1688 |
+
"eval_loss": 0.825222373008728,
|
1689 |
+
"eval_runtime": 0.8436,
|
1690 |
+
"eval_samples_per_second": 82.974,
|
1691 |
+
"eval_steps_per_second": 2.371,
|
1692 |
+
"step": 330
|
1693 |
+
},
|
1694 |
+
{
|
1695 |
+
"epoch": 166.0,
|
1696 |
+
"eval_accuracy": 0.6857142857142857,
|
1697 |
+
"eval_loss": 0.8247527480125427,
|
1698 |
+
"eval_runtime": 0.6665,
|
1699 |
+
"eval_samples_per_second": 105.023,
|
1700 |
+
"eval_steps_per_second": 3.001,
|
1701 |
+
"step": 332
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 167.0,
|
1705 |
+
"eval_accuracy": 0.6857142857142857,
|
1706 |
+
"eval_loss": 0.8242577910423279,
|
1707 |
+
"eval_runtime": 0.6669,
|
1708 |
+
"eval_samples_per_second": 104.971,
|
1709 |
+
"eval_steps_per_second": 2.999,
|
1710 |
+
"step": 334
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 168.0,
|
1714 |
+
"eval_accuracy": 0.6857142857142857,
|
1715 |
+
"eval_loss": 0.8237206339836121,
|
1716 |
+
"eval_runtime": 0.8327,
|
1717 |
+
"eval_samples_per_second": 84.06,
|
1718 |
+
"eval_steps_per_second": 2.402,
|
1719 |
+
"step": 336
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 169.0,
|
1723 |
+
"eval_accuracy": 0.6857142857142857,
|
1724 |
+
"eval_loss": 0.8231467604637146,
|
1725 |
+
"eval_runtime": 0.6532,
|
1726 |
+
"eval_samples_per_second": 107.163,
|
1727 |
+
"eval_steps_per_second": 3.062,
|
1728 |
+
"step": 338
|
1729 |
+
},
|
1730 |
+
{
|
1731 |
+
"epoch": 170.0,
|
1732 |
+
"learning_rate": 1.8750000000000002e-05,
|
1733 |
+
"loss": 0.8519,
|
1734 |
+
"step": 340
|
1735 |
+
},
|
1736 |
+
{
|
1737 |
+
"epoch": 170.0,
|
1738 |
+
"eval_accuracy": 0.6857142857142857,
|
1739 |
+
"eval_loss": 0.8226965665817261,
|
1740 |
+
"eval_runtime": 0.6591,
|
1741 |
+
"eval_samples_per_second": 106.199,
|
1742 |
+
"eval_steps_per_second": 3.034,
|
1743 |
+
"step": 340
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 171.0,
|
1747 |
+
"eval_accuracy": 0.6857142857142857,
|
1748 |
+
"eval_loss": 0.822342038154602,
|
1749 |
+
"eval_runtime": 0.8214,
|
1750 |
+
"eval_samples_per_second": 85.216,
|
1751 |
+
"eval_steps_per_second": 2.435,
|
1752 |
+
"step": 342
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 172.0,
|
1756 |
+
"eval_accuracy": 0.6857142857142857,
|
1757 |
+
"eval_loss": 0.822126030921936,
|
1758 |
+
"eval_runtime": 0.6612,
|
1759 |
+
"eval_samples_per_second": 105.861,
|
1760 |
+
"eval_steps_per_second": 3.025,
|
1761 |
+
"step": 344
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 173.0,
|
1765 |
+
"eval_accuracy": 0.6857142857142857,
|
1766 |
+
"eval_loss": 0.8220161199569702,
|
1767 |
+
"eval_runtime": 0.6469,
|
1768 |
+
"eval_samples_per_second": 108.212,
|
1769 |
+
"eval_steps_per_second": 3.092,
|
1770 |
+
"step": 346
|
1771 |
+
},
|
1772 |
+
{
|
1773 |
+
"epoch": 174.0,
|
1774 |
+
"eval_accuracy": 0.6857142857142857,
|
1775 |
+
"eval_loss": 0.8218111991882324,
|
1776 |
+
"eval_runtime": 0.8067,
|
1777 |
+
"eval_samples_per_second": 86.769,
|
1778 |
+
"eval_steps_per_second": 2.479,
|
1779 |
+
"step": 348
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 175.0,
|
1783 |
+
"learning_rate": 1.5625e-05,
|
1784 |
+
"loss": 0.92,
|
1785 |
+
"step": 350
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 175.0,
|
1789 |
+
"eval_accuracy": 0.6857142857142857,
|
1790 |
+
"eval_loss": 0.821461021900177,
|
1791 |
+
"eval_runtime": 0.6484,
|
1792 |
+
"eval_samples_per_second": 107.962,
|
1793 |
+
"eval_steps_per_second": 3.085,
|
1794 |
+
"step": 350
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 176.0,
|
1798 |
+
"eval_accuracy": 0.7,
|
1799 |
+
"eval_loss": 0.8210566639900208,
|
1800 |
+
"eval_runtime": 0.6645,
|
1801 |
+
"eval_samples_per_second": 105.342,
|
1802 |
+
"eval_steps_per_second": 3.01,
|
1803 |
+
"step": 352
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 177.0,
|
1807 |
+
"eval_accuracy": 0.7,
|
1808 |
+
"eval_loss": 0.8207017183303833,
|
1809 |
+
"eval_runtime": 0.8152,
|
1810 |
+
"eval_samples_per_second": 85.873,
|
1811 |
+
"eval_steps_per_second": 2.454,
|
1812 |
+
"step": 354
|
1813 |
+
},
|
1814 |
+
{
|
1815 |
+
"epoch": 178.0,
|
1816 |
+
"eval_accuracy": 0.7,
|
1817 |
+
"eval_loss": 0.8204047679901123,
|
1818 |
+
"eval_runtime": 0.7773,
|
1819 |
+
"eval_samples_per_second": 90.05,
|
1820 |
+
"eval_steps_per_second": 2.573,
|
1821 |
+
"step": 356
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 179.0,
|
1825 |
+
"eval_accuracy": 0.7,
|
1826 |
+
"eval_loss": 0.8200381398200989,
|
1827 |
+
"eval_runtime": 0.6533,
|
1828 |
+
"eval_samples_per_second": 107.15,
|
1829 |
+
"eval_steps_per_second": 3.061,
|
1830 |
+
"step": 358
|
1831 |
+
},
|
1832 |
+
{
|
1833 |
+
"epoch": 180.0,
|
1834 |
+
"learning_rate": 1.25e-05,
|
1835 |
+
"loss": 0.879,
|
1836 |
+
"step": 360
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 180.0,
|
1840 |
+
"eval_accuracy": 0.7,
|
1841 |
+
"eval_loss": 0.8197112083435059,
|
1842 |
+
"eval_runtime": 0.8254,
|
1843 |
+
"eval_samples_per_second": 84.803,
|
1844 |
+
"eval_steps_per_second": 2.423,
|
1845 |
+
"step": 360
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 181.0,
|
1849 |
+
"eval_accuracy": 0.7,
|
1850 |
+
"eval_loss": 0.8194140195846558,
|
1851 |
+
"eval_runtime": 0.6736,
|
1852 |
+
"eval_samples_per_second": 103.918,
|
1853 |
+
"eval_steps_per_second": 2.969,
|
1854 |
+
"step": 362
|
1855 |
+
},
|
1856 |
+
{
|
1857 |
+
"epoch": 182.0,
|
1858 |
+
"eval_accuracy": 0.6857142857142857,
|
1859 |
+
"eval_loss": 0.8190609812736511,
|
1860 |
+
"eval_runtime": 0.6501,
|
1861 |
+
"eval_samples_per_second": 107.669,
|
1862 |
+
"eval_steps_per_second": 3.076,
|
1863 |
+
"step": 364
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 183.0,
|
1867 |
+
"eval_accuracy": 0.6857142857142857,
|
1868 |
+
"eval_loss": 0.8187218308448792,
|
1869 |
+
"eval_runtime": 0.7205,
|
1870 |
+
"eval_samples_per_second": 97.148,
|
1871 |
+
"eval_steps_per_second": 2.776,
|
1872 |
+
"step": 366
|
1873 |
+
},
|
1874 |
+
{
|
1875 |
+
"epoch": 184.0,
|
1876 |
+
"eval_accuracy": 0.7,
|
1877 |
+
"eval_loss": 0.8184635639190674,
|
1878 |
+
"eval_runtime": 0.656,
|
1879 |
+
"eval_samples_per_second": 106.712,
|
1880 |
+
"eval_steps_per_second": 3.049,
|
1881 |
+
"step": 368
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 185.0,
|
1885 |
+
"learning_rate": 9.375000000000001e-06,
|
1886 |
+
"loss": 0.8893,
|
1887 |
+
"step": 370
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 185.0,
|
1891 |
+
"eval_accuracy": 0.7,
|
1892 |
+
"eval_loss": 0.8182028532028198,
|
1893 |
+
"eval_runtime": 0.6563,
|
1894 |
+
"eval_samples_per_second": 106.666,
|
1895 |
+
"eval_steps_per_second": 3.048,
|
1896 |
+
"step": 370
|
1897 |
+
},
|
1898 |
+
{
|
1899 |
+
"epoch": 186.0,
|
1900 |
+
"eval_accuracy": 0.7,
|
1901 |
+
"eval_loss": 0.8179557919502258,
|
1902 |
+
"eval_runtime": 0.6961,
|
1903 |
+
"eval_samples_per_second": 100.563,
|
1904 |
+
"eval_steps_per_second": 2.873,
|
1905 |
+
"step": 372
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"epoch": 187.0,
|
1909 |
+
"eval_accuracy": 0.7,
|
1910 |
+
"eval_loss": 0.8177469372749329,
|
1911 |
+
"eval_runtime": 0.6584,
|
1912 |
+
"eval_samples_per_second": 106.311,
|
1913 |
+
"eval_steps_per_second": 3.037,
|
1914 |
+
"step": 374
|
1915 |
+
},
|
1916 |
+
{
|
1917 |
+
"epoch": 188.0,
|
1918 |
+
"eval_accuracy": 0.7,
|
1919 |
+
"eval_loss": 0.8175888657569885,
|
1920 |
+
"eval_runtime": 0.6728,
|
1921 |
+
"eval_samples_per_second": 104.046,
|
1922 |
+
"eval_steps_per_second": 2.973,
|
1923 |
+
"step": 376
|
1924 |
+
},
|
1925 |
+
{
|
1926 |
+
"epoch": 189.0,
|
1927 |
+
"eval_accuracy": 0.7,
|
1928 |
+
"eval_loss": 0.8174628615379333,
|
1929 |
+
"eval_runtime": 0.661,
|
1930 |
+
"eval_samples_per_second": 105.894,
|
1931 |
+
"eval_steps_per_second": 3.026,
|
1932 |
+
"step": 378
|
1933 |
+
},
|
1934 |
+
{
|
1935 |
+
"epoch": 190.0,
|
1936 |
+
"learning_rate": 6.25e-06,
|
1937 |
+
"loss": 0.8501,
|
1938 |
+
"step": 380
|
1939 |
+
},
|
1940 |
+
{
|
1941 |
+
"epoch": 190.0,
|
1942 |
+
"eval_accuracy": 0.7,
|
1943 |
+
"eval_loss": 0.8172903656959534,
|
1944 |
+
"eval_runtime": 0.6643,
|
1945 |
+
"eval_samples_per_second": 105.379,
|
1946 |
+
"eval_steps_per_second": 3.011,
|
1947 |
+
"step": 380
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 191.0,
|
1951 |
+
"eval_accuracy": 0.7,
|
1952 |
+
"eval_loss": 0.8171139359474182,
|
1953 |
+
"eval_runtime": 0.7224,
|
1954 |
+
"eval_samples_per_second": 96.898,
|
1955 |
+
"eval_steps_per_second": 2.769,
|
1956 |
+
"step": 382
|
1957 |
+
},
|
1958 |
+
{
|
1959 |
+
"epoch": 192.0,
|
1960 |
+
"eval_accuracy": 0.7,
|
1961 |
+
"eval_loss": 0.8169858455657959,
|
1962 |
+
"eval_runtime": 0.6822,
|
1963 |
+
"eval_samples_per_second": 102.605,
|
1964 |
+
"eval_steps_per_second": 2.932,
|
1965 |
+
"step": 384
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 193.0,
|
1969 |
+
"eval_accuracy": 0.7,
|
1970 |
+
"eval_loss": 0.8169211149215698,
|
1971 |
+
"eval_runtime": 0.6488,
|
1972 |
+
"eval_samples_per_second": 107.887,
|
1973 |
+
"eval_steps_per_second": 3.082,
|
1974 |
+
"step": 386
|
1975 |
+
},
|
1976 |
+
{
|
1977 |
+
"epoch": 194.0,
|
1978 |
+
"eval_accuracy": 0.7,
|
1979 |
+
"eval_loss": 0.8168790340423584,
|
1980 |
+
"eval_runtime": 0.8355,
|
1981 |
+
"eval_samples_per_second": 83.778,
|
1982 |
+
"eval_steps_per_second": 2.394,
|
1983 |
+
"step": 388
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 195.0,
|
1987 |
+
"learning_rate": 3.125e-06,
|
1988 |
+
"loss": 0.8611,
|
1989 |
+
"step": 390
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 195.0,
|
1993 |
+
"eval_accuracy": 0.7,
|
1994 |
+
"eval_loss": 0.8168440461158752,
|
1995 |
+
"eval_runtime": 0.6488,
|
1996 |
+
"eval_samples_per_second": 107.884,
|
1997 |
+
"eval_steps_per_second": 3.082,
|
1998 |
+
"step": 390
|
1999 |
+
},
|
2000 |
+
{
|
2001 |
+
"epoch": 196.0,
|
2002 |
+
"eval_accuracy": 0.7,
|
2003 |
+
"eval_loss": 0.8168230056762695,
|
2004 |
+
"eval_runtime": 0.6602,
|
2005 |
+
"eval_samples_per_second": 106.026,
|
2006 |
+
"eval_steps_per_second": 3.029,
|
2007 |
+
"step": 392
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"epoch": 197.0,
|
2011 |
+
"eval_accuracy": 0.7,
|
2012 |
+
"eval_loss": 0.8167951107025146,
|
2013 |
+
"eval_runtime": 0.8588,
|
2014 |
+
"eval_samples_per_second": 81.511,
|
2015 |
+
"eval_steps_per_second": 2.329,
|
2016 |
+
"step": 394
|
2017 |
+
},
|
2018 |
+
{
|
2019 |
+
"epoch": 198.0,
|
2020 |
+
"eval_accuracy": 0.7,
|
2021 |
+
"eval_loss": 0.8167835474014282,
|
2022 |
+
"eval_runtime": 0.6762,
|
2023 |
+
"eval_samples_per_second": 103.513,
|
2024 |
+
"eval_steps_per_second": 2.958,
|
2025 |
+
"step": 396
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 199.0,
|
2029 |
+
"eval_accuracy": 0.7,
|
2030 |
+
"eval_loss": 0.8167732954025269,
|
2031 |
+
"eval_runtime": 0.6596,
|
2032 |
+
"eval_samples_per_second": 106.128,
|
2033 |
+
"eval_steps_per_second": 3.032,
|
2034 |
+
"step": 398
|
2035 |
+
},
|
2036 |
+
{
|
2037 |
+
"epoch": 200.0,
|
2038 |
+
"learning_rate": 0.0,
|
2039 |
+
"loss": 0.8881,
|
2040 |
+
"step": 400
|
2041 |
+
},
|
2042 |
+
{
|
2043 |
+
"epoch": 200.0,
|
2044 |
+
"eval_accuracy": 0.7,
|
2045 |
+
"eval_loss": 0.8167622089385986,
|
2046 |
+
"eval_runtime": 0.844,
|
2047 |
+
"eval_samples_per_second": 82.939,
|
2048 |
+
"eval_steps_per_second": 2.37,
|
2049 |
+
"step": 400
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 200.0,
|
2053 |
+
"step": 400,
|
2054 |
+
"total_flos": 2.2371640252416e+18,
|
2055 |
+
"train_loss": 0.9259392237663269,
|
2056 |
+
"train_runtime": 1042.9233,
|
2057 |
+
"train_samples_per_second": 86.296,
|
2058 |
+
"train_steps_per_second": 0.384
|
2059 |
+
}
|
2060 |
+
],
|
2061 |
+
"logging_steps": 10,
|
2062 |
+
"max_steps": 400,
|
2063 |
+
"num_train_epochs": 200,
|
2064 |
+
"save_steps": 500,
|
2065 |
+
"total_flos": 2.2371640252416e+18,
|
2066 |
+
"trial_name": null,
|
2067 |
+
"trial_params": null
|
2068 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4c4774af85a46fd62dc09e647d1b55a45135826a5db57bb78e91c0c297860e9
|
3 |
+
size 4091
|