from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler, AutoencoderKL import torch import os #//////////////////////////////////////////////////////////////// guidance_scale=7 steps=20 width=1024 height=1024 base_model_id_str = "SDXL-xmasize-Lora-Images" prompt_prefix = "" prompt_suffix = " xmasize, Very detailed, clean, high quality, sharp image" neg_prompt = "text, watermark, grainy, blurry, unfocused, nsfw, naked, nude, noisy image, deformed, distorted, pixelated" #//////////////////////////////////////////////////////////////// base = None refiner = None #//////////////////////////////////////////////////////////////// def load(): global base, refiner vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) base = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) base.to("cuda") base.load_lora_weights("Norod78/SDXL-xmasize-Lora") base.enable_xformers_memory_efficient_attention() refiner = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-refiner-1.0", text_encoder_2=base.text_encoder_2, vae=base.vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ) refiner.to("cuda") refiner.enable_xformers_memory_efficient_attention() def generate(prompt, file_prefix ,samples = 2, seed = 7777): global base, refiner torch.manual_seed(seed) prompt = prompt_prefix + prompt prompt += prompt_suffix base_model_latents = base([prompt] * samples, negative_prompt = [neg_prompt] * samples, num_inference_steps=steps, guidance_scale=guidance_scale, height=height, width=width, output_type="latent")["images"] torch.manual_seed(seed) refiner_model_images = refiner([prompt] * samples, negative_prompt = [neg_prompt] * samples, num_inference_steps=steps, image=base_model_latents)["images"] for idx, image in enumerate(refiner_model_images): image.save(f"{base_model_id_str}/{file_prefix}-{idx}-{seed}--{width}x{height}--{guidance_scale}--{base_model_id_str}.jpg") def main(): load() os.mkdir(base_model_id_str) generate("A livingroom", "01_LivingRoom") generate("A nice town", "02_NiceTown") generate("A scene in \"The Minions\" movie", "03_MinionsMovie") generate("Wonderwoman", "04_Wonderwoman") generate("Marge Simpson", "05_MargeSimpson") generate("A beautiful woman", "06_BeautifulWoman") generate("A magical landscape", "07_MagicalLandscape") generate("Cute dog", "08_CuteDog") generate("An oil on canvas portrait of Snoop Dogg, Mark Ryden", "09_SnoopDog") generate("A flemish baroque painting of Kermit from the muppet show", "10_KermitFlemishBaroque") generate("Gal Gadot in Avatar", "11_GalGadotAvatar") generate("Ninja turtles, Naoto Hattori", "12_TMNT") generate("A socially awkward potato", "13_AwkwardPotato") generate("Pikachu as Rick and morty, Eric Wallis", "14_PikachuRnM") generate("The girl with pearl earing", "15_PearlEaring") generate("American Gothic ", "16_AmericanGothic") generate("Miss. Piggy as the Mona Lisa", "17_MsPiggyMonaLisa") generate("Rick Sanchez from the TV show \"Rick and Morty\"", "18_RickSanchez") generate("A paiting of Southpark with rainbow", "19_Southpark") generate("An oil painting of Phineas and Pherb hamering on a new machine, Eric Wallis", "20_PhineasPherb") generate("Bender, Saturno Butto", "21_Bender") generate("A psychedelic image of Bojack Horseman", "22_Bojack") generate("A movie poster for Gravity Falls Cthulhu stories", "23_GravityFalls") generate("A vibrant oil painting portrait of She-Ra", "24_Shira", 2, 512) if __name__ == '__main__': main()