File size: 16,823 Bytes
e07f172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efa1c71
e07f172
 
 
 
 
efa1c71
 
 
 
 
 
e07f172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efa1c71
 
 
 
 
 
e07f172
 
 
 
 
 
 
 
 
 
efa1c71
e07f172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import tensorflow as tf
from tensorflow.keras.layers import Conv2d,Dense,Dropout,LayerNormalization,Activation
from tensorflow.keras.initializers import RandomNormal
from tensorflow.keras import Model
import collections.abc
from itertools import repeat
from typing import Optional
import numpy as np
import math


def modulate(x, shift, scale):
    return x * (1 + tf.expand_dims(scale, 1)) + tf.expand_dims(shift, 1)


#################################################################################
#               Embedding Layers for Timesteps and Class Labels                 #
#################################################################################

class TimestepEmbedder:
    """
    Embeds scalar timesteps into vector representations.
    """
    def __init__(self, hidden_size, frequency_embedding_size=256):
        self.mlp = tf.keras.Sequential()
        self.mlp.add(Dense(hidden_size, kernel_initializer=RandomNormal(stddev=0.02), use_bias=True))
        self.mlp.add(Activation('silu'))
        self.mlp.add(Dense(hidden_size,  kernel_initializer=RandomNormal(stddev=0.02), use_bias=True))
        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        """
        Create sinusoidal timestep embeddings.
        :param t: a 1-D Tensor of N indices, one per batch element.
                          These may be fractional.
        :param dim: the dimension of the output.
        :param max_period: controls the minimum frequency of the embeddings.
        :return: an (N, D) Tensor of positional embeddings.
        """
        # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
        half = dim // 2
        freqs = tf.math.exp(
            -math.log(max_period) * tf.range(start=0, limit=half, dtype=tf.float32) / half
        )
        args = tf.cast(t[:, None], 'float32') * freqs[None]
        embedding = tf.concat([tf.math.cos(args), tf.math.sin(args)], axis=-1)
        if dim % 2:
            embedding = tf.concat([embedding, tf.zeros_like(embedding[:, :1])], axis=-1)
        return embedding

    def __call__(self, t):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
        t_emb = self.mlp(t_freq)
        return t_emb


class LabelEmbedder(tf.keras.layers.Layer):
    """
    Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
    """
    def __init__(self, num_classes, hidden_size, dropout_prob):
        use_cfg_embedding = dropout_prob > 0
        self.embedding_table = self.add_weight(
            name='embedding_table',
            shape=(num_classes + use_cfg_embedding, hidden_size),
            initializer=tf.keras.initializers.RandomNormal(stddev=0.02),
            trainable=True
        )
        self.num_classes = num_classes
        self.dropout_prob = dropout_prob

    def token_drop(self, labels, force_drop_ids=None):
        """
        Drops labels to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            drop_ids = tf.random.uniform([labels.shape[0]]) < self.dropout_prob
        else:
            drop_ids = force_drop_ids == 1
        labels = tf.where(drop_ids, self.num_classes, labels)
        return labels

    def __call__(self, labels, train, force_drop_ids=None):
        use_dropout = self.dropout_prob > 0
        if (train and use_dropout) or (force_drop_ids is not None):
            labels = self.token_drop(labels, force_drop_ids)
        embeddings = tf.gather(self.embedding_table, labels)
        return embeddings


#################################################################################
#                                 Core DiT Model                                #
#################################################################################

class DiTBlock:
    """
    A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
    """
    def __init__(self, hidden_size, num_heads, mlp_ratio=4.0):
        self.norm1 = LayerNormalization(epsilon=1e-6)
        self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True)
        self.norm2 = LayerNormalization(epsilon=1e-6)
        mlp_hidden_dim = int(hidden_size * mlp_ratio)
        self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, drop=0)
        self.adaLN_modulation = tf.keras.Sequential()
        self.adaLN_modulation.add(Activation('silu'))
        self.adaLN_modulation.add(Dense(6 * hidden_size, kernel_initializer='zeros', use_bias=True))

    def __call__(self, x, c):
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = tf.split(self.adaLN_modulation(c), num_or_size_splits=6, axis=1)
        x = x + tf.expand_dims(gate_msa, 1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa))
        x = x + tf.expand_dims(gate_mlp, 1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
        return x


class FinalLayer:
    """
    The final layer of DiT.
    """
    def __init__(self, hidden_size, patch_size, out_channels):
        self.norm_final = LayerNormalization(epsilon=1e-6)
        self.linear = Dense(patch_size * patch_size * out_channels, kernel_initializer='zeros', use_bias=True)
        self.adaLN_modulation = tf.keras.Sequential()
        self.adaLN_modulation.add(Activation('silu'))
        self.adaLN_modulation.add(Dense(2 * hidden_size, kernel_initializer='zeros', use_bias=True))

    def __call__(self, x, c):
        shift, scale = tf.split(self.adaLN_modulation(c), num_or_size_splits=2, axis=1)
        x = modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x


class DiT(Model):
    """
    Diffusion model with a Transformer backbone.
    """
    def __init__(
        self,
        input_size=32,
        patch_size=2,
        in_channels=4,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4.0,
        class_dropout_prob=0.1,
        num_classes=1000,
        learn_sigma=True,
    ):
        super(DiT, self).__init__()
        self.learn_sigma = learn_sigma
        self.in_channels = in_channels
        self.out_channels = in_channels * 2 if learn_sigma else in_channels
        self.patch_size = patch_size
        self.num_heads = num_heads

        self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
        self.t_embedder = TimestepEmbedder(hidden_size)
        self.y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob)
        num_patches = self.x_embedder.num_patches
        # Will use fixed sin-cos embedding:
        self.pos_embed = self.add_weight(
            name='pos_embed',
            shape=(1, num_patches, hidden_size),
            initializer=tf.keras.initializers.Zeros(),
            trainable=False  # To freeze this variable
        )

        self.blocks = [
            DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(depth)
        ]
        self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels)
        self.initialize_weights()

    def initialize_weights(self):
        # Initialize (and freeze) pos_embed by sin-cos embedding:
        pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5))
        self.pos_embed.assign(tf.convert_to_tensor(pos_embed, dtype=tf.float32)[tf.newaxis, :])

    def unpatchify(self, x):
        """
        x: (N, T, patch_size**2 * C)
        imgs: (N, H, W, C)
        """
        c = self.out_channels
        p = self.x_embedder.patch_size[0]
        h = w = int(x.shape[1] ** 0.5)
        assert h * w == x.shape[1]

        x = tf.reshape(x, (x.shape[0], h, w, p, p, c))
        x = tf.einsum('nhwpqc->nchpwq', x)
        imgs = tf.reshape(x, (x.shape[0], h * p, h * p, c))
        return imgs

    def __call__(self, x, t, y):
        """
        Forward pass of DiT.
        x: (N, H, W, C) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N,) tensor of class labels
        """
        x = self.x_embedder(x) + self.pos_embed  # (N, T, D), where T = H * W / patch_size ** 2
        t = self.t_embedder(t)                   # (N, D)
        y = self.y_embedder(y, self.training)    # (N, D)
        c = t + y                                # (N, D)
        for block in self.blocks:
            x = block(x, c)                      # (N, T, D)
        x = self.final_layer(x, c)                # (N, T, patch_size ** 2 * out_channels)
        x = self.unpatchify(x)                   # (N, out_channels, H, W)
        return x

    def forward_with_cfg(self, x, t, y, cfg_scale):
        """
        Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
        """
        # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
        half = x[: len(x) // 2]
        combined = tf.concat([half, half], axis=0)
        model_out = self.forward(combined, t, y)
        # For exact reproducibility reasons, we apply classifier-free guidance on only
        # three channels by default. The standard approach to cfg applies it to all channels.
        # This can be done by uncommenting the following line and commenting-out the line following that.
        # eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
        eps, rest = model_out[:, :3], model_out[:, 3:]
        cond_eps, uncond_eps = tf.split(eps, len(eps) // 2, dim=0)
        half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
        eps = tf.concat([half_eps, half_eps], axis=0)
        return tf.concat([eps, rest], axis=1)


#################################################################################
#                   Sine/Cosine Positional Embedding Functions                  #
#################################################################################
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py

def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    grid_h = np.arange(grid_size, dtype=np.float32)
    grid_w = np.arange(grid_size, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size, grid_size])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token and extra_tokens > 0:
        pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float64)
    omega /= embed_dim / 2.
    omega = 1. / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out) # (M, D/2)
    emb_cos = np.cos(out) # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


#################################################################################
#                                   DiT Configs                                  #
#################################################################################

def DiT_XL_2():
    return DiT(depth=28, hidden_size=1152, patch_size=2, num_heads=16)

def DiT_XL_4():
    return DiT(depth=28, hidden_size=1152, patch_size=4, num_heads=16)

def DiT_XL_8():
    return DiT(depth=28, hidden_size=1152, patch_size=8, num_heads=16)

def DiT_L_2():
    return DiT(depth=24, hidden_size=1024, patch_size=2, num_heads=16)

def DiT_L_4():
    return DiT(depth=24, hidden_size=1024, patch_size=4, num_heads=16)

def DiT_L_8():
    return DiT(depth=24, hidden_size=1024, patch_size=8, num_heads=16)

def DiT_B_2():
    return DiT(depth=12, hidden_size=768, patch_size=2, num_heads=12)

def DiT_B_4():
    return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12)

def DiT_B_8():
    return DiT(depth=12, hidden_size=768, patch_size=8, num_heads=12)

def DiT_S_2():
    return DiT(depth=12, hidden_size=384, patch_size=2, num_heads=6)

def DiT_S_4():
    return DiT(depth=12, hidden_size=384, patch_size=4, num_heads=6)

def DiT_S_8():
    return DiT(depth=12, hidden_size=384, patch_size=8, num_heads=6)


DiT_models = {
    'DiT-XL/2': DiT_XL_2,  'DiT-XL/4': DiT_XL_4,  'DiT-XL/8': DiT_XL_8,
    'DiT-L/2':  DiT_L_2,   'DiT-L/4':  DiT_L_4,   'DiT-L/8':  DiT_L_8,
    'DiT-B/2':  DiT_B_2,   'DiT-B/4':  DiT_B_4,   'DiT-B/8':  DiT_B_8,
    'DiT-S/2':  DiT_S_2,   'DiT-S/4':  DiT_S_4,   'DiT-S/8':  DiT_S_8,
}

def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
            return tuple(x)
        return tuple(repeat(x, n))
    return parse


to_2tuple = _ntuple(2)


class PatchEmbed:
    """ 2D Image to Patch Embedding
    """
    def __init__(
            self,
            img_size: Optional[int] = 224,
            patch_size: int = 16,
            in_chans: int = 3,
            embed_dim: int = 768,
            flatten: bool = True,
            bias: bool = True,
    ):
        self.patch_size = to_2tuple(patch_size)
        if img_size is not None:
            self.img_size = to_2tuple(img_size)
            self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size)])
            self.num_patches = self.grid_size[0] * self.grid_size[1]
        else:
            self.img_size = None
            self.grid_size = None
            self.num_patches = None

        # flatten spatial dim and transpose to channels last, kept for bwd compat
        self.flatten = flatten

        self.proj = Conv2d(embed_dim, kernel_size=patch_size, strides=patch_size, use_bias=bias)

    def __call__(self, x):
        x = self.proj(x)
        B, H, W, C = x.shape
        if self.flatten:
            x = tf.reshape(x, [B, H*W, C])  # NHWC -> NLC
        return x


class Mlp:
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    def __init__(
            self,
            in_features,
            hidden_features=None,
            out_features=None,
            act_layer=tf.nn.gelu,
            norm_layer=None,
            bias=True,
            drop=0.,
            use_conv=False,
    ):
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        bias = to_2tuple(bias)
        drop_probs = to_2tuple(drop)

        self.fc1 = Dense(hidden_features, use_bias=bias[0])
        self.act = act_layer
        self.drop1 = Dropout(drop_probs[0])
        self.fc2 = Dense(out_features, use_bias=bias[1])
        self.drop2 = Dropout(drop_probs[1])

    def __call__(self, x):
        x = self.fc1(x)
        x = self.act(x, approximate="tanh")
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x


class Attention:
    def __init__(
            self,
            dim: int,
            num_heads: int = 8,
            qkv_bias: bool = False,
            attn_drop: float = 0.,
            proj_drop: float = 0.,
    ):
        assert dim % num_heads == 0, 'dim should be divisible by num_heads'
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim ** -0.5

        self.qkv = Dense(dim * 3, use_bias=qkv_bias)
        self.attn_drop = Dropout(attn_drop)
        self.proj = Dense(dim)
        self.proj_drop = Dropout(proj_drop)

    def __call__(self, x):
        B, N, C = x.shape
        qkv = tf.transpose(tf.reshape(self.qkv(x), (B, N, 3, self.num_heads, self.head_dim)), (2, 0, 3, 1, 4))
        q, k, v = tf.unstack(qkv)

        q = q * self.scale
        attn = tf.matmul(q, tf.transpose(k, (0, 1, 3, 2)))
        attn = tf.nn.softmax(attn)
        attn = self.attn_drop(attn)
        x = tf.matmul(attn, v)

        x = tf.reshape(tf.transpose(x, (0, 2, 1, 3)), (B, N, C))
        x = self.proj(x)
        x = self.proj_drop(x)
        return x