File size: 22,077 Bytes
a5dda7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
diff --git a/src/transformers/models/llama/configuration_llama.py b/src/transformers/models/llama/configuration_llama.py
index d456b79e6..f85603289 100644
--- a/src/transformers/models/llama/configuration_llama.py
+++ b/src/transformers/models/llama/configuration_llama.py
@@ -50,6 +50,9 @@ class LlamaConfig(PretrainedConfig):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
+ num_key_value_heads (`int`, *optional*, defaults to 32):
+ This is the number of groups that should be used to implement GQA.When converting a multi-head checkpoint to a GQA checkpoint, we
+ construct each group key and value head by meanpooling all the original heads within that group
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
@@ -97,6 +100,7 @@ class LlamaConfig(PretrainedConfig):
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
+ num_key_value_heads=32,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
@@ -115,6 +119,7 @@ class LlamaConfig(PretrainedConfig):
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
+ self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
diff --git a/src/transformers/models/llama/convert_llama_weights_to_hf.py b/src/transformers/models/llama/convert_llama_weights_to_hf.py
index e8fb7f825..a9464e1a6 100644
--- a/src/transformers/models/llama/convert_llama_weights_to_hf.py
+++ b/src/transformers/models/llama/convert_llama_weights_to_hf.py
@@ -59,17 +59,22 @@ INTERMEDIATE_SIZE_MAP = {
"13B": 13824,
"30B": 17920,
"65B": 22016,
+ "70B": 28672,
}
NUM_SHARDS = {
"7B": 1,
+ "7Bf": 1,
"13B": 2,
+ "13Bf": 2,
"30B": 4,
"65B": 8,
+ "70B": 8,
+ "70Bf": 8,
}
-def compute_intermediate_size(n):
- return int(math.ceil(n * 8 / 3) + 255) // 256 * 256
+def compute_intermediate_size(n, ffn_dim_multiplier=1):
+ return int((math.ceil(n * 8 / 3) + 255) * ffn_dim_multiplier // 256 * 256)
def read_json(path):
@@ -82,7 +87,7 @@ def write_json(text, path):
json.dump(text, f)
-def write_model(model_path, input_base_path, model_size):
+def write_model(model_path, input_base_path, model_size, safe_serialization=True):
os.makedirs(model_path, exist_ok=True)
tmp_model_path = os.path.join(model_path, "tmp")
os.makedirs(tmp_model_path, exist_ok=True)
@@ -97,9 +102,17 @@ def write_model(model_path, input_base_path, model_size):
base = 10000.0
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
+ if "n_kv_heads" in params:
+ num_key_value_heads = params["n_kv_heads"] # for GQA / MQA
+ num_local_key_value_heads = n_heads_per_shard // num_key_value_heads
+ key_value_dim = dim//num_key_value_heads
+ else: # compatibility with other checkpoints
+ num_key_value_heads = n_heads
+ num_local_key_value_heads = n_heads_per_shard
+ key_value_dim = dim
# permute for sliced rotary
- def permute(w):
- return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)
+ def permute(w, n_heads = n_heads,dim1=dim, dim2=dim):
+ return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)
print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
# Load weights
@@ -160,19 +173,19 @@ def write_model(model_path, input_base_path, model_size):
state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
torch.cat(
[
- loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim)
+ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(num_local_key_value_heads, dims_per_head, dim)
for i in range(num_shards)
],
dim=0,
- ).reshape(dim, dim)
+ ).reshape(key_value_dim, dim),num_key_value_heads, key_value_dim, dim
)
state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
[
- loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim)
+ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(num_local_key_value_heads, dims_per_head, dim)
for i in range(num_shards)
],
dim=0,
- ).reshape(dim, dim)
+ ).reshape(key_value_dim, dim)
state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
@@ -218,13 +231,14 @@ def write_model(model_path, input_base_path, model_size):
# Write configs
index_dict["metadata"] = {"total_size": param_count * 2}
write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
-
+ ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1
config = LlamaConfig(
hidden_size=dim,
- intermediate_size=compute_intermediate_size(dim),
+ intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier),
num_attention_heads=params["n_heads"],
num_hidden_layers=params["n_layers"],
rms_norm_eps=params["norm_eps"],
+ num_key_value_heads = num_key_value_heads
)
config.save_pretrained(tmp_model_path)
@@ -239,7 +253,7 @@ def write_model(model_path, input_base_path, model_size):
del model.config._name_or_path
print("Saving in the Transformers format.")
- model.save_pretrained(model_path)
+ model.save_pretrained(model_path, safe_serialization=safe_serialization)
shutil.rmtree(tmp_model_path)
@@ -259,18 +273,20 @@ def main():
)
parser.add_argument(
"--model_size",
- choices=["7B", "13B", "30B", "65B", "tokenizer_only"],
+ choices=["7B", "7Bf","13B", "13Bf", "30B", "65B", "70B", "70Bf", "tokenizer_only"],
)
parser.add_argument(
"--output_dir",
help="Location to write HF model and tokenizer",
)
+ parser.add_argument("--safe_serialization",type=bool, help="Whether or not to save using `safetensors`.")
args = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir,
input_base_path=os.path.join(args.input_dir, args.model_size),
model_size=args.model_size,
+ safe_serialization=args.safe_serialization
)
spm_path = os.path.join(args.input_dir, "tokenizer.model")
write_tokenizer(args.output_dir, spm_path)
diff --git a/src/transformers/models/llama/modeling_llama.py b/src/transformers/models/llama/modeling_llama.py
index 6cdbb2623..d70d0e00d 100755
--- a/src/transformers/models/llama/modeling_llama.py
+++ b/src/transformers/models/llama/modeling_llama.py
@@ -85,7 +85,7 @@ class LlamaRMSNorm(nn.Module):
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
- return (self.weight * hidden_states).to(input_dtype)
+ return self.weight.to(input_dtype) * hidden_states
class LlamaRotaryEmbedding(torch.nn.Module):
@@ -204,6 +204,16 @@ class LlamaMLP(nn.Module):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
+def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
+ """torch.repeat_interleave(x, dim=1, repeats=n_rep)"""
+ bs, n_kv_heads, slen, head_dim = hidden_states.shape
+ if n_rep == 1:
+ return hidden_states
+ hidden_states = hidden_states[:, :, None, :, :].expand(bs, n_kv_heads, n_rep, slen, head_dim)
+ return hidden_states.reshape(bs, n_kv_heads * n_rep, slen, head_dim)
+
+
+
class LlamaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
@@ -213,6 +223,8 @@ class LlamaAttention(nn.Module):
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
+ self.num_key_value_heads = config.num_key_value_heads
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
if (self.head_dim * self.num_heads) != self.hidden_size:
@@ -221,8 +233,8 @@ class LlamaAttention(nn.Module):
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
- self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
- self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self._init_rope()
@@ -243,9 +255,6 @@ class LlamaAttention(nn.Module):
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
- return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
-
def forward(
self,
hidden_states: torch.Tensor,
@@ -258,8 +267,8 @@ class LlamaAttention(nn.Module):
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
- key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
- value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
@@ -275,6 +284,9 @@ class LlamaAttention(nn.Module):
past_key_value = (key_states, value_states) if use_cache else None
+ # repeat k/v heads if n_kv_heads < n_heads
+ key_states = repeat_kv(key_states, self.num_key_value_groups) # (bs, n_heads, seqlen, head_dim)
+ value_states = repeat_kv(value_states, self.num_key_value_groups) # (bs, n_heads, seqlen, head_dim)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
diff --git a/src/transformers/models/llama/tokenization_llama.py b/src/transformers/models/llama/tokenization_llama.py
index 193d4edd5..f0fa81c3e 100644
--- a/src/transformers/models/llama/tokenization_llama.py
+++ b/src/transformers/models/llama/tokenization_llama.py
@@ -21,13 +21,15 @@
"""Tokenization classes for LLaMA."""
import os
from shutil import copyfile
-from typing import Any, Dict, List, Optional, Tuple
+from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
+if TYPE_CHECKING:
+ from transformers.pipelines.conversational import Conversation
logger = logging.get_logger(__name__)
@@ -46,6 +48,7 @@ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
}
SPIECE_UNDERLINE = "▁"
+B_INST, E_INST = "[INST]", "[/INST]"
class LlamaTokenizer(PreTrainedTokenizer):
"""
@@ -314,3 +317,34 @@ class LlamaTokenizer(PreTrainedTokenizer):
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
return output
+
+ def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
+ """Builds the input ids for a conversation.
+ This is the format used in the provided examples. "
+ ```
+ <bos>[INST] Prompt [/INST] Answer <eos>
+ <bos>[INST] Prompt [/INST]
+ ```
+ Args:
+ conversation (`Conversation`):
+ Conversation to build input ids for.
+ Returns:
+ `List[int]`:
+ Input ids for the conversation.
+ """
+ dialogue = list(conversation.iter_texts())
+ if not all([is_user for is_user, msg in dialogue[::2]]) or not all([not is_user for is_user, msg in dialogue[1::2]]):
+ raise ValueError(
+ "The model only supports 'user' and 'assistant' roles, starting with user and alternating (u/a/u/a/u...)"
+ )
+ dialog_tokens: List[int] = sum(
+ [
+ [self.bos_token_id]+self.encode(f"{B_INST} {(prompt[1]).strip()} {E_INST} {(answer[1]).strip()} ", add_special_tokens = False) + [self.eos_token_id]
+ for prompt, answer in zip(dialogue[::2], dialogue[1::2])
+ ],
+ [],
+ )
+ if not (dialogue[-1][0]):
+ raise ValueError(f"Last message must be from user, got {dialogue[-1]['role']}")
+ dialog_tokens += [self.bos_token_id] + self.encode(f"{B_INST} {(dialogue[-1][1]).strip()} {E_INST}", add_special_tokens = False)
+ return dialog_tokens
\ No newline at end of file
diff --git a/src/transformers/models/llama/tokenization_llama_fast.py b/src/transformers/models/llama/tokenization_llama_fast.py
index 28e9413a5..5a3127c69 100644
--- a/src/transformers/models/llama/tokenization_llama_fast.py
+++ b/src/transformers/models/llama/tokenization_llama_fast.py
@@ -33,6 +33,12 @@ else:
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"}
+B_INST, E_INST = "[INST]", "[/INST]"
+B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
+DEFAULT_SYSTEM_PROMPT = """\
+You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
+
+If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""
class LlamaTokenizerFast(PreTrainedTokenizerFast):
"""
@@ -171,3 +177,43 @@ class LlamaTokenizerFast(PreTrainedTokenizerFast):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
+
+ def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
+ """Builds the input ids for a conversation.
+ This is the format used in the provided examples. System prompts should be manually added
+ at the beginning of the conversation. If no system prompt is given, the `DEFAULT_SYSTEM_PROMPT` will
+ be used.
+ ```
+ <bos>[INST] Prompt [/INST] Answer <eos>
+ <bos>[INST] Prompt [/INST]
+ ```
+ Args:
+ conversation (`Conversation`):
+ Conversation to build input ids for.
+ Returns:
+ `List[int]`:
+ Input ids for the conversation.
+ """
+ dialogue = list(conversation.iter_texts())
+ if not all([is_user for is_user, msg in dialogue[::2]]) or not all([not is_user for is_user, msg in dialogue[1::2]]):
+ raise ValueError(
+ "The model only supports 'user' and 'assistant' roles, starting with user and alternating (u/a/u/a/u...)"
+ )
+
+ # TODO add system prompt
+ dialog_tokens: List[int] = []
+ if B_SYS not in conversation.past_user_inputs[0]:
+ conversation.past_user_inputs[0] = B_SYS + DEFAULT_SYSTEM_PROMPT + E_SYS + conversation.past_user_inputs[0]
+
+
+ dialog_tokens += sum(
+ [
+ [self.bos_token_id]+self.encode(f"{B_INST} {(prompt[1]).strip()} {E_INST} {(answer[1]).strip()} ", add_special_tokens = False) + [self.eos_token_id]
+ for prompt, answer in zip(dialogue[::2], dialogue[1::2])
+ ],
+ [],
+ )
+ if not (dialogue[-1][0]):
+ raise ValueError(f"Last message must be from user, got {dialogue[-1]['role']}")
+ dialog_tokens += [self.bos_token_id] + self.encode(f"{B_INST} {(dialogue[-1][1]).strip()} {E_INST}", add_special_tokens = False)
+ return dialog_tokens
\ No newline at end of file
diff --git a/tests/models/llama/test_modeling_llama.py b/tests/models/llama/test_modeling_llama.py
index e8b808461..a43ba3654 100644
--- a/tests/models/llama/test_modeling_llama.py
+++ b/tests/models/llama/test_modeling_llama.py
@@ -365,3 +365,65 @@ class LlamaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixi
# The output should be different for long inputs
self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
+class LlamaIntegrationTest(unittest.TestCase):
+
+ def test_model_7b_logits(self):
+ input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
+ model = LlamaForCausalLM.from_pretrained("/raid/arthur/llama-7b", device_map = "auto")
+ out = model(torch.tensor(input_ids))
+ # Expected mean on dim = -1
+ EXPECTED_MEAN = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]])
+ # slicing logits[0, 0, 0:30]
+ EXPECTED_SLICE = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883,
+ -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961,
+ -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820,
+ -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250,
+ -7.7422, -7.3398])
+
+ def test_model_7bf_logits(self):
+ input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
+ model = LlamaForCausalLM.from_pretrained("/raid/arthur/llama-7bf", device_map = "auto")
+ out = model(torch.tensor(input_ids))
+ # Expected mean on dim = -1
+ EXPECTED_MEAN = torch.tensor([ 0.0719, -4.1667, -3.4864, -4.6226, 1.7280, -3.6511, 1.0122, -0.1268])
+ # slicing logits[0, 0, 0:30]
+ EXPECTED_SLICE = torch.tensor([ 0.1038, -0.2218, 0.3132, -0.8379, 1.5576, 2.6680, 1.5811, 2.5078,
+ 1.2129, 0.3484, 1.6602, 0.8213, 0.6294, 0.4907, 1.2588, 0.3982,
+ 0.1039, 1.9062, 0.6665, 1.0439, 0.5850, 1.8535, 2.3828, 1.8096,
+ 1.0498, 1.4629, 1.3506, 2.8574, 1.3447, 1.9971])
+
+ def test_model_13b_logits(self):
+ input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
+ model = LlamaForCausalLM.from_pretrained("/raid/arthur/llama-13b", device_map = "auto")
+ out = model(torch.tensor(input_ids))
+ # Expected mean on dim = -1
+ EXPECTED_MEAN = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]],dtype=torch.float32)
+ # slicing logits[0, 0, 0:30]
+ EXPECTED_SLICE = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154,
+ -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177,
+ -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141,
+ -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273])
+
+
+
+ def test_model_13bf_logits(self):
+ input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
+ model = LlamaForCausalLM.from_pretrained("/raid/arthur/llama-13bf", device_map = "auto")
+ out = model(torch.tensor(input_ids))
+ # Expected mean on dim = -1
+ EXPECTED_MEAN = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]])
+ # slicing logits[0, 0, 0:30]
+ EXPECTED_SLICE = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786,
+ -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771,
+ -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934,
+ -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513])
+
+ def test_model_70b_logits(self):
+ input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
+
+ EXPECTED_MEAN = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086,
+ -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785,
+ -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391,
+ -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312],dtype=torch.float32)
+ EXPECTED_SLICE = torch.tensor([[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]],dtype=torch.float32)
+
|