File size: 22,077 Bytes
a5dda7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
diff --git a/src/transformers/models/llama/configuration_llama.py b/src/transformers/models/llama/configuration_llama.py
index d456b79e6..f85603289 100644
--- a/src/transformers/models/llama/configuration_llama.py
+++ b/src/transformers/models/llama/configuration_llama.py
@@ -50,6 +50,9 @@ class LlamaConfig(PretrainedConfig):
             Number of hidden layers in the Transformer encoder.
         num_attention_heads (`int`, *optional*, defaults to 32):
             Number of attention heads for each attention layer in the Transformer encoder.
+        num_key_value_heads (`int`, *optional*, defaults to 32):
+            This is the number of groups that should be used to implement GQA.When converting a multi-head checkpoint to a GQA checkpoint, we
+            construct each group key and value head by meanpooling all the original heads within that group
         hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
             The non-linear activation function (function or string) in the decoder.
         max_position_embeddings (`int`, *optional*, defaults to 2048):
@@ -97,6 +100,7 @@ class LlamaConfig(PretrainedConfig):
         intermediate_size=11008,
         num_hidden_layers=32,
         num_attention_heads=32,
+        num_key_value_heads=32,
         hidden_act="silu",
         max_position_embeddings=2048,
         initializer_range=0.02,
@@ -115,6 +119,7 @@ class LlamaConfig(PretrainedConfig):
         self.intermediate_size = intermediate_size
         self.num_hidden_layers = num_hidden_layers
         self.num_attention_heads = num_attention_heads
+        self.num_key_value_heads = num_key_value_heads
         self.hidden_act = hidden_act
         self.initializer_range = initializer_range
         self.rms_norm_eps = rms_norm_eps
diff --git a/src/transformers/models/llama/convert_llama_weights_to_hf.py b/src/transformers/models/llama/convert_llama_weights_to_hf.py
index e8fb7f825..a9464e1a6 100644
--- a/src/transformers/models/llama/convert_llama_weights_to_hf.py
+++ b/src/transformers/models/llama/convert_llama_weights_to_hf.py
@@ -59,17 +59,22 @@ INTERMEDIATE_SIZE_MAP = {
     "13B": 13824,
     "30B": 17920,
     "65B": 22016,
+    "70B": 28672,
 }
 NUM_SHARDS = {
     "7B": 1,
+    "7Bf": 1,
     "13B": 2,
+    "13Bf": 2,
     "30B": 4,
     "65B": 8,
+    "70B": 8,
+    "70Bf": 8,
 }
 
 
-def compute_intermediate_size(n):
-    return int(math.ceil(n * 8 / 3) + 255) // 256 * 256
+def compute_intermediate_size(n, ffn_dim_multiplier=1):
+    return int((math.ceil(n * 8 / 3) + 255) * ffn_dim_multiplier // 256 * 256)
 
 
 def read_json(path):
@@ -82,7 +87,7 @@ def write_json(text, path):
         json.dump(text, f)
 
 
-def write_model(model_path, input_base_path, model_size):
+def write_model(model_path, input_base_path, model_size, safe_serialization=True):
     os.makedirs(model_path, exist_ok=True)
     tmp_model_path = os.path.join(model_path, "tmp")
     os.makedirs(tmp_model_path, exist_ok=True)
@@ -97,9 +102,17 @@ def write_model(model_path, input_base_path, model_size):
     base = 10000.0
     inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
 
+    if "n_kv_heads" in params:
+        num_key_value_heads = params["n_kv_heads"]  # for GQA / MQA
+        num_local_key_value_heads = n_heads_per_shard // num_key_value_heads
+        key_value_dim = dim//num_key_value_heads
+    else: # compatibility with other checkpoints
+        num_key_value_heads = n_heads
+        num_local_key_value_heads = n_heads_per_shard
+        key_value_dim = dim
     # permute for sliced rotary
-    def permute(w):
-        return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)
+    def permute(w, n_heads = n_heads,dim1=dim, dim2=dim):
+        return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)
 
     print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
     # Load weights
@@ -160,19 +173,19 @@ def write_model(model_path, input_base_path, model_size):
             state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
                 torch.cat(
                     [
-                        loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim)
+                        loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(num_local_key_value_heads, dims_per_head, dim)
                         for i in range(num_shards)
                     ],
                     dim=0,
-                ).reshape(dim, dim)
+                ).reshape(key_value_dim, dim),num_key_value_heads, key_value_dim, dim
             )
             state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
                 [
-                    loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim)
+                    loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(num_local_key_value_heads, dims_per_head, dim)
                     for i in range(num_shards)
                 ],
                 dim=0,
-            ).reshape(dim, dim)
+            ).reshape(key_value_dim, dim)
 
             state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
                 [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
@@ -218,13 +231,14 @@ def write_model(model_path, input_base_path, model_size):
     # Write configs
     index_dict["metadata"] = {"total_size": param_count * 2}
     write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
-
+    ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1
     config = LlamaConfig(
         hidden_size=dim,
-        intermediate_size=compute_intermediate_size(dim),
+        intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier),
         num_attention_heads=params["n_heads"],
         num_hidden_layers=params["n_layers"],
         rms_norm_eps=params["norm_eps"],
+        num_key_value_heads = num_key_value_heads
     )
     config.save_pretrained(tmp_model_path)
 
@@ -239,7 +253,7 @@ def write_model(model_path, input_base_path, model_size):
     del model.config._name_or_path
 
     print("Saving in the Transformers format.")
-    model.save_pretrained(model_path)
+    model.save_pretrained(model_path, safe_serialization=safe_serialization)
     shutil.rmtree(tmp_model_path)
 
 
@@ -259,18 +273,20 @@ def main():
     )
     parser.add_argument(
         "--model_size",
-        choices=["7B", "13B", "30B", "65B", "tokenizer_only"],
+        choices=["7B", "7Bf","13B", "13Bf", "30B", "65B", "70B", "70Bf", "tokenizer_only"],
     )
     parser.add_argument(
         "--output_dir",
         help="Location to write HF model and tokenizer",
     )
+    parser.add_argument("--safe_serialization",type=bool, help="Whether or not to save using `safetensors`.")
     args = parser.parse_args()
     if args.model_size != "tokenizer_only":
         write_model(
             model_path=args.output_dir,
             input_base_path=os.path.join(args.input_dir, args.model_size),
             model_size=args.model_size,
+            safe_serialization=args.safe_serialization
         )
     spm_path = os.path.join(args.input_dir, "tokenizer.model")
     write_tokenizer(args.output_dir, spm_path)
diff --git a/src/transformers/models/llama/modeling_llama.py b/src/transformers/models/llama/modeling_llama.py
index 6cdbb2623..d70d0e00d 100755
--- a/src/transformers/models/llama/modeling_llama.py
+++ b/src/transformers/models/llama/modeling_llama.py
@@ -85,7 +85,7 @@ class LlamaRMSNorm(nn.Module):
         variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
         hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
 
-        return (self.weight * hidden_states).to(input_dtype)
+        return self.weight.to(input_dtype) * hidden_states
 
 
 class LlamaRotaryEmbedding(torch.nn.Module):
@@ -204,6 +204,16 @@ class LlamaMLP(nn.Module):
         return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
 
 
+def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
+    """torch.repeat_interleave(x, dim=1, repeats=n_rep)"""
+    bs, n_kv_heads, slen, head_dim = hidden_states.shape
+    if n_rep == 1:
+        return hidden_states
+    hidden_states = hidden_states[:, :, None, :, :].expand(bs, n_kv_heads, n_rep, slen, head_dim)
+    return hidden_states.reshape(bs, n_kv_heads * n_rep, slen, head_dim)
+    
+
+
 class LlamaAttention(nn.Module):
     """Multi-headed attention from 'Attention Is All You Need' paper"""
 
@@ -213,6 +223,8 @@ class LlamaAttention(nn.Module):
         self.hidden_size = config.hidden_size
         self.num_heads = config.num_attention_heads
         self.head_dim = self.hidden_size // self.num_heads
+        self.num_key_value_heads = config.num_key_value_heads
+        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
         self.max_position_embeddings = config.max_position_embeddings
 
         if (self.head_dim * self.num_heads) != self.hidden_size:
@@ -221,8 +233,8 @@ class LlamaAttention(nn.Module):
                 f" and `num_heads`: {self.num_heads})."
             )
         self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
-        self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
-        self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
+        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
+        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
         self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
         self._init_rope()
 
@@ -243,9 +255,6 @@ class LlamaAttention(nn.Module):
             else:
                 raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
 
-    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
-        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
-
     def forward(
         self,
         hidden_states: torch.Tensor,
@@ -258,8 +267,8 @@ class LlamaAttention(nn.Module):
         bsz, q_len, _ = hidden_states.size()
 
         query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
-        key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
-        value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
+        key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
+        value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
 
         kv_seq_len = key_states.shape[-2]
         if past_key_value is not None:
@@ -275,6 +284,9 @@ class LlamaAttention(nn.Module):
 
         past_key_value = (key_states, value_states) if use_cache else None
 
+        # repeat k/v heads if n_kv_heads < n_heads
+        key_states = repeat_kv(key_states, self.num_key_value_groups) # (bs, n_heads, seqlen, head_dim)
+        value_states = repeat_kv(value_states, self.num_key_value_groups)  # (bs, n_heads, seqlen, head_dim)
         attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 
         if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
diff --git a/src/transformers/models/llama/tokenization_llama.py b/src/transformers/models/llama/tokenization_llama.py
index 193d4edd5..f0fa81c3e 100644
--- a/src/transformers/models/llama/tokenization_llama.py
+++ b/src/transformers/models/llama/tokenization_llama.py
@@ -21,13 +21,15 @@
 """Tokenization classes for LLaMA."""
 import os
 from shutil import copyfile
-from typing import Any, Dict, List, Optional, Tuple
+from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
 
 import sentencepiece as spm
 
 from ...tokenization_utils import AddedToken, PreTrainedTokenizer
 from ...utils import logging
 
+if TYPE_CHECKING:
+    from transformers.pipelines.conversational import Conversation
 
 logger = logging.get_logger(__name__)
 
@@ -46,6 +48,7 @@ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
 }
 SPIECE_UNDERLINE = "▁"
 
+B_INST, E_INST = "[INST]", "[/INST]"
 
 class LlamaTokenizer(PreTrainedTokenizer):
     """
@@ -314,3 +317,34 @@ class LlamaTokenizer(PreTrainedTokenizer):
             output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
 
         return output
+
+    def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
+        """Builds the input ids for a conversation.
+        This is the format used in the provided examples. "
+        ```
+        <bos>[INST] Prompt [/INST] Answer <eos>
+        <bos>[INST] Prompt [/INST]
+        ```
+        Args:
+            conversation (`Conversation`):
+                Conversation to build input ids for.
+        Returns:
+            `List[int]`:
+                Input ids for the conversation.
+        """
+        dialogue = list(conversation.iter_texts())
+        if not all([is_user for is_user, msg in dialogue[::2]]) or not all([not is_user for is_user, msg in dialogue[1::2]]):
+            raise ValueError(
+                "The model only supports 'user' and 'assistant' roles, starting with user and alternating (u/a/u/a/u...)"
+            )
+        dialog_tokens: List[int] = sum(
+                [
+                    [self.bos_token_id]+self.encode(f"{B_INST} {(prompt[1]).strip()} {E_INST} {(answer[1]).strip()} ", add_special_tokens = False) + [self.eos_token_id]
+                    for prompt, answer in zip(dialogue[::2], dialogue[1::2])
+                ],
+                [],
+            )
+        if not (dialogue[-1][0]):
+            raise ValueError(f"Last message must be from user, got {dialogue[-1]['role']}")
+        dialog_tokens += [self.bos_token_id] + self.encode(f"{B_INST} {(dialogue[-1][1]).strip()} {E_INST}", add_special_tokens = False)
+        return dialog_tokens
\ No newline at end of file
diff --git a/src/transformers/models/llama/tokenization_llama_fast.py b/src/transformers/models/llama/tokenization_llama_fast.py
index 28e9413a5..5a3127c69 100644
--- a/src/transformers/models/llama/tokenization_llama_fast.py
+++ b/src/transformers/models/llama/tokenization_llama_fast.py
@@ -33,6 +33,12 @@ else:
 logger = logging.get_logger(__name__)
 VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"}
 
+B_INST, E_INST = "[INST]", "[/INST]"
+B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
+DEFAULT_SYSTEM_PROMPT = """\
+You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
+
+If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""
 
 class LlamaTokenizerFast(PreTrainedTokenizerFast):
     """
@@ -171,3 +177,43 @@ class LlamaTokenizerFast(PreTrainedTokenizerFast):
             copyfile(self.vocab_file, out_vocab_file)
 
         return (out_vocab_file,)
+
+    def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
+        """Builds the input ids for a conversation.
+        This is the format used in the provided examples. System prompts should be manually added
+        at the beginning of the conversation. If no system prompt is given, the `DEFAULT_SYSTEM_PROMPT` will
+        be used.
+        ```
+        <bos>[INST] Prompt [/INST] Answer <eos>
+        <bos>[INST] Prompt [/INST]
+        ```
+        Args:
+            conversation (`Conversation`):
+                Conversation to build input ids for.
+        Returns:
+            `List[int]`:
+                Input ids for the conversation.
+        """
+        dialogue = list(conversation.iter_texts())
+        if not all([is_user for is_user, msg in dialogue[::2]]) or not all([not is_user for is_user, msg in dialogue[1::2]]):
+            raise ValueError(
+                "The model only supports 'user' and 'assistant' roles, starting with user and alternating (u/a/u/a/u...)"
+            )
+        
+        # TODO add system prompt
+        dialog_tokens: List[int] = []
+        if B_SYS not in conversation.past_user_inputs[0]:
+            conversation.past_user_inputs[0] = B_SYS + DEFAULT_SYSTEM_PROMPT + E_SYS + conversation.past_user_inputs[0]
+            
+        
+        dialog_tokens += sum(
+                [
+                    [self.bos_token_id]+self.encode(f"{B_INST} {(prompt[1]).strip()} {E_INST} {(answer[1]).strip()} ", add_special_tokens = False) + [self.eos_token_id]
+                    for prompt, answer in zip(dialogue[::2], dialogue[1::2])
+                ],
+                [],
+            )
+        if not (dialogue[-1][0]):
+            raise ValueError(f"Last message must be from user, got {dialogue[-1]['role']}")
+        dialog_tokens += [self.bos_token_id] + self.encode(f"{B_INST} {(dialogue[-1][1]).strip()} {E_INST}", add_special_tokens = False)
+        return dialog_tokens
\ No newline at end of file
diff --git a/tests/models/llama/test_modeling_llama.py b/tests/models/llama/test_modeling_llama.py
index e8b808461..a43ba3654 100644
--- a/tests/models/llama/test_modeling_llama.py
+++ b/tests/models/llama/test_modeling_llama.py
@@ -365,3 +365,65 @@ class LlamaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixi
 
         # The output should be different for long inputs
         self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
+class LlamaIntegrationTest(unittest.TestCase):
+    
+    def test_model_7b_logits(self):
+        input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338] 
+        model = LlamaForCausalLM.from_pretrained("/raid/arthur/llama-7b", device_map = "auto")
+        out = model(torch.tensor(input_ids))
+        # Expected mean on dim = -1 
+        EXPECTED_MEAN = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406,  0.8262, -3.0033,  1.2964, -3.3699]])
+        # slicing logits[0, 0, 0:30]
+        EXPECTED_SLICE  = torch.tensor([-12.8281,  -7.4453,  -0.4639,  -8.0625,  -7.2500,  -8.0000,  -6.4883,
+         -7.7695,  -7.8438,  -7.0312,  -6.2188,  -7.1328,  -1.8496,   1.9961,
+         -8.6250,  -6.7227, -12.8281,  -6.9492,  -7.0742,  -7.7852,  -7.5820,
+         -7.9062,  -6.9375,  -7.9805,  -8.3438,  -8.1562,  -8.0469,  -7.6250,
+         -7.7422,  -7.3398])
+    
+    def test_model_7bf_logits(self):
+        input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338] 
+        model = LlamaForCausalLM.from_pretrained("/raid/arthur/llama-7bf", device_map = "auto")
+        out = model(torch.tensor(input_ids))
+        # Expected mean on dim = -1 
+        EXPECTED_MEAN = torch.tensor([ 0.0719, -4.1667, -3.4864, -4.6226,  1.7280, -3.6511,  1.0122, -0.1268])
+        # slicing logits[0, 0, 0:30]
+        EXPECTED_SLICE  = torch.tensor([ 0.1038, -0.2218,  0.3132, -0.8379,  1.5576,  2.6680,  1.5811,  2.5078,
+         1.2129,  0.3484,  1.6602,  0.8213,  0.6294,  0.4907,  1.2588,  0.3982,
+         0.1039,  1.9062,  0.6665,  1.0439,  0.5850,  1.8535,  2.3828,  1.8096,
+         1.0498,  1.4629,  1.3506,  2.8574,  1.3447,  1.9971])
+
+    def test_model_13b_logits(self):
+        input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338] 
+        model = LlamaForCausalLM.from_pretrained("/raid/arthur/llama-13b", device_map = "auto")
+        out = model(torch.tensor(input_ids))
+        # Expected mean on dim = -1 
+        EXPECTED_MEAN = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]],dtype=torch.float32)
+        # slicing logits[0, 0, 0:30]
+        EXPECTED_SLICE  = torch.tensor([-8.1406, -8.0547,  2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154,
+        -1.6895, -1.8516, -2.3574, -0.9277,  3.7598,  6.5742, -1.2998, -0.1177,
+        -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141,
+        -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273])
+        
+       
+        
+    def test_model_13bf_logits(self):
+        input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338] 
+        model = LlamaForCausalLM.from_pretrained("/raid/arthur/llama-13bf", device_map = "auto")
+        out = model(torch.tensor(input_ids))
+        # Expected mean on dim = -1 
+        EXPECTED_MEAN = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]])
+        # slicing logits[0, 0, 0:30]
+        EXPECTED_SLICE  = torch.tensor([-2.2227,  4.8828,  0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786,
+        -0.7803, -1.0674, -1.2920, -0.1570,  0.8008,  2.0723, -0.9497,  0.2771,
+        -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934,
+        -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513])
+    
+    def test_model_70b_logits(self):
+        input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338] 
+        
+        EXPECTED_MEAN = torch.tensor([-9.4922, -3.9551,  1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086,
+        -6.5391, -5.6172, -5.5820, -5.5352,  1.7881,  3.6289, -6.5117, -3.4785,
+        -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391,
+        -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312],dtype=torch.float32)
+        EXPECTED_SLICE = torch.tensor([[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]],dtype=torch.float32)
+